首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Magnetic fluid hyperthermia has been recently considered as a Renaissance of cancer treatment modality due to its remarkably low side effects and high treatment efficacy compared to conventional chemotheraphy or radiotheraphy. However, insufficient AC induction heating power at a biological safe range of AC magnetic field (Happl·fappl < 3.0–5.0 × 109 A m?1 s?1), and highly required biocompatibility of superparamagnetic nanoparticle (SPNP) hyperthermia agents are still remained as critical challenges for successful clinical hyperthermia applications. Here, newly developed highly biocompatible magnesium shallow doped γ‐Fe2O3 (Mg0.13‐γFe2O3) SPNPs with exceptionally high intrinsic loss power (ILP) in a range of 14 nH m2 kg?1, which is an ≈100 times higher than that of commercial Fe3O4 (Feridex, ILP = 0.15 nH m2 kg?1) at Happl·fappl = 1.23 × 109 A m?1 s?1 are reported. The significantly enhanced heat induction characteristics of Mg0.13‐γFe2O3 are primarily due to the dramatically enhanced out‐of‐phase magnetic susceptibility and magnetically tailored AC/DC magnetic softness resulted from the systematically controlled Mg2+ cations distribution and concentrations in octahedral site Fe vacancies of γ‐Fe2O3 instead of well‐known Fe3O4 SPNPs. In vitro and in vivo magnetic hyperthermia studies using Mg0.13‐γFe2O3 nanofluids are conducted to estimate bioavailability and biofeasibility. Mg0.13‐γFe2O3 nanofluids show promising hyperthermia effects to completely kill the tumors.  相似文献   

4.
MoS2 nanosheets as a promising 2D nanomaterial have extensive applications in energy storage and conversion, but their electrochemical performance is still unsatisfactory as an anode for efficient Li+/Na+ storage. In this work, the design and synthesis of vertically grown MoS2 nanosheet arrays, decorated with graphite carbon and Fe2O3 nanoparticles, on flexible carbon fiber cloth (denoted as Fe2O3@C@MoS2/CFC) is reported. When evaluated as an anode for lithium‐ion batteries, the Fe2O3@C@MoS2/CFC electrode manifests an outstanding electrochemical performance with a high discharge capacity of 1541.2 mAh g?1 at 0.1 A g?1 and a good capacity retention of 80.1% at 1.0 A g?1 after 500 cycles. As for sodium‐ion batteries, it retains a high reversible capacity of 889.4 mAh g?1 at 0.5 A g?1 over 200 cycles. The superior electrochemical performance mainly results from the unique 3D ordered Fe2O3@C@MoS2 array‐type nanostructures and the synergistic effect between the C@MoS2 nanosheet arrays and Fe2O3 nanoparticles. The Fe2O3 nanoparticles act as spacers to steady the structure, and the graphite carbon could be incorporated into MoS2 nanosheets to improve the conductivity of the whole electrode and strengthen the integration of MoS2 nanosheets and CFC by the adhesive role, together ensuring high conductivity and mechanical stability.  相似文献   

5.
6.
Developing microwave absorption materials with ultrawide bandwidth and low density still remains a challenge, which restricts their actual application in electromagnetic signal anticontamination and defense stealth technology. Here a series of olive‐like γ‐Fe2O3@C core–shell spindles with different shell thickness and γ‐Fe2O3@C@α‐MnO2 spindles with different volumes of dipolar‐distribution cavities were successfully prepared. Both series of absorbers exhibit excellent absorption properties. The γ‐Fe2O3@C@α‐MnO2 spindle with controllable cavity volume exhibits an effective absorption (2O3@C spindle reaches as high as ?45 dB because of the optimized electromagnetic impedance balance between polymer shell and γ‐Fe2O3 core. Intrinsic ferromagnetism of the anisotropy spindle is confirmed by electron holography. Strong coupling of magnetic flux stray lines between spindles is directly imaged. This unique morphology and facile etching technique might facilitate the study of core–shell type microwave absorbers.  相似文献   

7.
8.
Here, a Sb‐doped SnO2 (ATO) nanorod underneath an α‐Fe2O3 nanorod sheathed with TiO2 for photoelectrochemical (PEC) water splitting is reported. The experimental results, corroborated with theoretical analysis, demonstrate that the ATO nanorod underlayer effect on the α‐Fe2O3 nanorod sheathed with TiO2 enhances the PEC water splitting performance. The growth of the well‐defined ATO nanorods is reported as a conductive underlayer to improve α‐Fe2O3 PEC water oxidation performance. The α‐Fe2O3 nanorods grown on the ATO nanorods exhibit improved performance for PEC water oxidation compared to α‐Fe2O3 grown on flat fluorine‐doped tin oxide glass. Furthermore, a simple and facile TiCl4 chemical treatment further introduces TiO2 passivation layer formation on the α‐Fe2O3 to reduce surface recombination. As a result, these unique nanostructures show dramatically improved photocurrent density (139% higher than that of the pure hematite nanorods).  相似文献   

9.
10.
The electrical properties of α,ω‐mercaptoalkyl ferrocenes with different alkyl chain lengths embedded in a self‐assembled host matrix of alkanethiols on Au(111) are studied by scanning tunneling microscopy and spectroscopy. Based on current–distance spectroscopy, as well as on the evaluation of Fowler–Nordheim tunneling current oscillations, the apparent barrier height of ferrocene is determined independently by two methods. The electronic coupling of the ferrocene moiety to the Au(111) substrate is shown to depend on the length of the alkane‐spacer chain. In a double tunnel junction model our experimental findings are explained, addressing the role of the different molecular moieties of the mercaptoalkyl ferrocenes.  相似文献   

11.
12.
Microstructure and mechanical properties of friction welded γ‐TiAl based alloy Ti‐47Al‐3.5(Mn+Cr+Nb)‐0.8(B+Si) in investment cast condition. This paper describes properties of joints produced by friction welding of the intermetallic γ‐TiAl based alloy Ti‐47Al‐3.5(Mn+Cr+Nb)‐0.8(B+Si) in investment cast and hot‐isostatically pressed condition. The effect of friction welding parameters on microstructure and local properties are examined and discussed. It is found that the properties of the joint are essentially affected by properties of as‐cast Ti‐47Al‐3.5(Mn+Cr+Nb)‐0.8(B+Si) base material, both at room temperature and 700 °C.  相似文献   

13.
14.
15.
16.
17.
The present study reports a quantified monitoring by means of in situ resonance Raman scattering that analyzes phase‐shifting characteristics of π‐systems upon interacting with target analytes. A chemo‐ and thermochromic polydiacetylene vesicular probe is evaluated with multiple‐wavelength Raman scattering modes in resonance with its phases, respectively, and thus can trace the phase‐shifts. This Raman scattering‐based analytical quantification is also successful in monitoring host–guest recognition events by utilizing much narrower bands, compared to those in conventional absorption or photoluminescence (PL) methods. As one of the outcomes, the monitoring analysis overcomes the limitations based on widely used colorimetric response (%CR) or PL that failed in the case of interaction with a surfactant, CTAB.  相似文献   

18.
19.
Harnessing solar energy for the production of clean hydrogen by photo­electrochemical water splitting represents a very attractive, but challenging approach for sustainable energy generation. In this regard, the fabrication of Fe2O3–TiO2 photoanodes is reported, showing attractive performances [≈2.0 mA cm−2 at 1.23 V vs. the reversible hydrogen electrode in 1 M NaOH] under simulated one‐sun illumination. This goal, corresponding to a tenfold photoactivity enhancement with respect to bare Fe2O3, is achieved by atomic layer deposition of TiO2 over hematite (α‐Fe2O3) nanostructures fabricated by plasma enhanced‐chemical vapor deposition and final annealing at 650 °C. The adopted approach enables an intimate Fe2O3–TiO2 coupling, resulting in an electronic interplay at the Fe2O3/TiO2 interface. The reasons for the photocurrent enhancement determined by TiO2 overlayers with increasing thickness are unraveled by a detailed chemico‐physical investigation, as well as by the study of photo­generated charge carrier dynamics. Transient absorption spectroscopy shows that the increased photoelectrochemical response of heterostructured photoanodes compared to bare hematite is due to an enhanced separation of photogenerated charge carriers and more favorable hole dynamics for water oxidation. The stable responses obtained even in simulated seawater provides a feasible route in view of the eventual large‐scale generation of renewable energy.  相似文献   

20.
The self‐assembly of human islet amyloid polypeptide (hIAPP) into β‐sheet‐rich nanofibrils is associated with the pathogeny of type 2 diabetes. Soluble hIAPP is intrinsically disordered with N‐terminal residues 8–17 as α‐helices. To understand the contribution of the N‐terminal helix to the aggregation of full‐length hIAPP, here the oligomerization dynamics of the hIAPP fragment 8–20 (hIAPP8‐20) are investigated with combined computational and experimental approaches. hIAPP8‐20 forms cross‐β nanofibrils in silico from isolated helical monomers via the helical oligomers and α‐helices to β‐sheets transition, as confirmed by transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, Fourier transform infrared spectroscopy, and reversed‐phase high performance liquid chromatography. The computational results also suggest that the critical nucleus of aggregation corresponds to hexamers, consistent with a recent mass‐spectroscopy study of hIAPP8‐20 aggregation. hIAPP8‐20 oligomers smaller than hexamers are helical and unstable, while the α‐to‐β transition starts from the hexamers. Converted β‐sheet‐rich oligomers first form β‐barrel structures as intermediates before aggregating into cross‐β nanofibrils. This study uncovers a complete picture of hIAPP8‐20 peptide oligomerization, aggregation nucleation via conformational conversion, formation of β‐barrel intermediates, and assembly of cross‐β protofibrils, thereby shedding light on the aggregation of full‐length hIAPP, a hallmark of pancreatic beta‐cell degeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号