首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dielectric elastomer actuators (DEAs) are soft electromechanical devices that exhibit large energy densities and fast actuation rates. They are typically produced by planar methods and, thus, expand in‐plane when actuated. Here, reported is a method for fabricating 3D interdigitated DEAs that exhibit in‐plane contractile actuation modes. First, a conductive elastomer ink is created with the desired rheology needed for printing high‐fidelity, interdigitated electrodes. Upon curing, the electrodes are then encapsulated in a self‐healing dielectric matrix composed of a plasticized, chemically crosslinked polyurethane acrylate. 3D DEA devices are fabricated with tunable mechanical properties that exhibit breakdown fields of 25 V µm?1 and actuation strains of up to 9%. As exemplars, printed are prestrain‐free rotational actuators and multi‐voxel DEAs with orthogonal actuation directions in large‐area, out‐of‐plane motifs.  相似文献   

2.
Dielectric elastomer actuators (DEA) are smart lightweight flexible materials integrating actuation, sensing, and structural functions. The field of DEAs has been progressing rapidly, with actuation strains of over 300% reported, and many application concepts demonstrated. However many DEAs are slow, exhibit large viscoelastic drift, and have short lifetimes, due principally to the use of acrylic elastomer membranes and carbon grease electrodes applied by hand. Here a DEA‐driven tunable lens, the world's fastest capable of holding a stable focal length, is presented. By using low‐loss silicone elastomers rather than acrylics, a settling time shorter than 175 μs is obtained for a 20% change in focal length. The silicone‐based lenses show a bandwidth 3 orders of magnitude higher compared to lenses of the same geometry fabricated from the acrylic elastomer. Stretchable electrodes, a carbon black and silicone composite, are precisely patterned by pad‐printing and subsequently cross‐linked, enabling strong adhesion to the elastomer and excellent resistance to abrasion. The lenses operate for over 400 million cycles without degradation, and show no change after more than two years of storage. This lens demonstrates the unmatched combination of strain, speed, and stability that DEAs can achieve, paving the way for complex fast soft machines.  相似文献   

3.
Electrically responsive ionic soft actuators that can exhibit large bending strain under low electrical input power are promising candidates for future soft electronics and wearable devices. However, some drawbacks such as low blocking force, slow response time, and poor durability should be overcome for practical engineering applications. Herein, this study reports defect‐engineered 3D graphitic carbon nitride (GCN) and nitrogen‐doped graphene (NG) hetero‐nanostructure that were developed by one‐pot hydrothermal method in order to design functionally antagonistic hybrid electrodes for superior ionic soft actuators. While NG facilitates rapid electron transfer in 3D networked nanoarchitectures, the enriched‐nitrogen content in GCN provides good wettability and mechanical resiliency with poly(3,4 ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). The 3D hybrid nanostructures generate unimpeded ion channels and sufficient contact area with the electrolyte membrane to provide higher capacitance and mechanical integrity, which are critical prerequisites for high‐performance actuation. The developed soft actuator based on the nitrogen‐enriched 3D hetero‐nanostructure is found to exhibit large bending strain (0.52%), wide frequency response, 5 h durability (93% retention), 2.4 times higher bending displacement, and twofold higher electromechanical efficiency compared to PEDOT:PSS under ±0.5 V input voltage. Such 3D functionally antagonistic hybrid electrodes offer hitherto unavailable opportunities in developing ultralow voltage‐driven ionic actuators for the next‐generation soft electronics.  相似文献   

4.
Pneumatic Networks for Soft Robotics that Actuate Rapidly   总被引:1,自引:0,他引:1       下载免费PDF全文
Soft robots actuated by inflation of a pneumatic network (a “pneu‐net”) of small channels in elastomeric materials are appealing for producing sophisticated motions with simple controls. Although current designs of pneu‐nets achieve motion with large amplitudes, they do so relatively slowly (over seconds). This paper describes a new design for pneu‐nets that reduces the amount of gas needed for inflation of the pneu‐net, and thus increases its speed of actuation. A simple actuator can bend from a linear to a quasi‐circular shape in 50 ms when pressurized at ΔP = 345 kPa. At high rates of pressurization, the path along which the actuator bends depends on this rate. When inflated fully, the chambers of this new design experience only one‐tenth the change in volume of that required for the previous design. This small change in volume requires comparably low levels of strain in the material at maximum amplitudes of actuation, and commensurately low rates of fatigue and failure. This actuator can operate over a million cycles without significant degradation of performance. This design for soft robotic actuators combines high rates of actuation with high reliability of the actuator, and opens new areas of application for them.  相似文献   

5.
Metallic mesh materials are promising candidates to replace traditional transparent conductive oxides such as indium tin oxide (ITO) that is restricted by the limited indium resource and its brittle nature. The challenge of metal based transparent conductive networks is to achieve high transmittance, low sheet resistance, and small perforation size simultaneously, all of which significantly relate to device performances in optoelectronics. In this work, trilayer dielectric/metal/dielectric (D/M/D) nanomesh electrodes are reported with precisely controlled perforation size, wire width, and uniform hole distribution employing the nanosphere lithography technique. TiO2/Au/TiO2 nanomesh films with small hole diameter (≤700 nm) and low thickness (≤50 nm) are shown to yield high transmittance (>90%), low sheet resistance (≤70 Ω sq?1), as well as outstanding flexural endurance and feasibility for large area patterning. Further, by tuning the surface wettability, these films are applied as easily recyclable flexible electrodes for electrochromic devices. The simple and cost‐effective fabrication of diverse D/M/D nanomesh transparent conductive films with tunable optoelectronic properties paves a way for the design and realization of specialized transparent electrodes in optoelectronics.  相似文献   

6.
Soft robots have the appealing advantages of being highly flexible and adaptive to complex environments. However, the low‐stiffness nature of the constituent materials makes soft robotic systems incompetent in tasks requiring relatively high load capacity. Despite recent attempts to develop stiffness‐tunable soft actuators by employing variable stiffness materials and structures, the reported stiffness‐tunable actuators generally suffer from limitations including slow responses, small deformations, and difficulties in fabrication with microfeatures. This work presents a paradigm to design and manufacture fast‐response, stiffness‐tunable (FRST) soft actuators via hybrid multimaterial 3D printing. The integration of a shape memory polymer layer into the fully printed actuator body enhances its stiffness by up to 120 times without sacrificing flexibility and adaptivity. The printed Joule‐heating circuit and fluidic cooling microchannel enable fast heating and cooling rates and allow the FRST actuator to complete a softening–stiffening cycle within 32 s. Numerical simulations are used to optimize the load capacity and thermal rates. The high load capacity and shape adaptivity of the FRST actuator are finally demonstrated by a robotic gripper with three FRST actuators that can grasp and lift objects with arbitrary shapes and various weights spanning from less than 10 g to up to 1.5 kg.  相似文献   

7.
To add more functionalities and overcome the limitation in conventional soft robots, highly anisotropic soft actuators with color shifting function during actuation is demonstrated for the first time. The electrothermally operating soft actuators with installed transparent metal nanowire percolation network heater allow easy programming of their actuation direction and instantaneous visualization of temperature changes through color change. Due to the unique direction dependent coefficient of thermal expansion mismatch, the suggested actuator demonstrates a highly anisotropic and reversible behavior with very large bending curvature (2.5 cm?1) at considerably low temperature (≈40 °C) compared to the previously reported electrothermal soft actuators. The mild operating heat condition required for the maximum curvature enables the superior long‐term stability during more than 10 000 operating cycles. Also, the optical transparency of the polymer bilayer and metal nanowire percolation network heater allow the incorporation of the thermochromic pigments to fabricate color‐shifting actuators. As a proof‐of‐concept, various color‐shifting biomimetic soft robots such as color‐shifting blooming flower, fluttering butterfly, and color‐shifting twining tendril are demonstrated. The developed color‐shifting anisotropic soft actuator is expected to open new application fields and functionalities overcoming the limitation of current soft robots.  相似文献   

8.
Actuators have shown great promise in many fields including soft robotics. Since reconfiguration allows actuators to change their actuation mode, it is considered a key characteristic for new-generation adaptive actuators. However, it remains a challenge to design simple and universal methods to fabricate actuators that can be reconfigured to allow diverse actuation modes. Here, a macroscopically discretionary healing-assembly strategy to fabricate reconfigurable soft actuators based on intrinsic self-healing poly(dimethylglyoxime-urethane) (PDOU) elastomers is developed. The PDOU elastomers with different degrees of crosslinking show different responsiveness to solvents, and are seamlessly healed. Crosslinked and non-crosslinked PDOU elastomers as building units are healing-assembled into actuators/robots with diverse actuation behaviors. Notably, the assembled actuators/robots are readily reprogrammed to exhibit multiple actuation modes by simply tailoring and reassembling without any external stimuli. This work paves a new, simple, powerful, and universal method to construct sophisticated soft robots.  相似文献   

9.
As an alternative to the brittle and expensive indium tin oxide (ITO) transparent conductor, a very simple, room‐temperature nanosoldering method of Ag nanowire percolation network is developed with conducting polymer to demonstrate highly flexible and even stretchable transparent conductors. The drying conducting polymer on Ag nanowire percolation network is used as a nanosoldering material inducing strong capillary‐force‐assisted stiction of the nanowires to other nanowires or to the substrate to enhance the electrical conductivity, mechanical stability, and adhesion to the substrate of the nanowire percolation network without the conventional high‐temperature annealing step. Highly bendable Ag nanowire/conducting polymer hybrid films with low sheet resistance and high transmittance are demonstrated on a plastic substrate. The fabricated flexible transparent electrode maintains its conductivity over 20 000 cyclic bends and 5 to 10% stretching. Finally, a large area (A4‐size) transparent conductor and a flexible touch panel on a non‐flat surface are fabricated to demonstrate the possibility of cost‐effective mass production as well as the applicability to the unconventional arbitrary soft surfaces. These results suggest that this is an important step toward producing intelligent and multifunctional soft electric devices as friendly human/electronics interface, and it may ultimately contribute to the applications in wearable computers.  相似文献   

10.
Programmable soft materials exhibiting dynamically reconfigurable, reversible, fast, and latchable shape transformation are key for applications ranging from wearable tactile actuators to deployable soft robots. Multimorph soft actuator sheets with high load‐bearing capacity are reported, capable of bending on multiple axis, made by combining a single dielectric elastomer actuator (DEA) with two layers of shape memory polymers (SMPs) fibers and an array of stretchable heaters. The rigidity of the SMP fibers can be reduced by two orders of magnitude by Joule heating, thus allowing the orientation and location of soft and hard regions to be dynamically defined by addressing the heaters. When the DEA is then actuated, it bends preferentially along the soft axis, enabling the device to morph into multiple distinct configurations. Cooling down the SMPs locks these shape changes into place. A tip deflection angle of over 300° at 5 kV is achieved with a blocking force of over 27 mN. Devices using two antagonistic DEAs are also reported that attain more complex shapes. Multimorphing is demonstrated by gripping objects with different shapes. An analytical model is developed to determine the design parameters that offers the best trade‐off between large actuation and high holding forces.  相似文献   

11.
Soft robots are intrinsically safe for use near humans and adaptable when operated in unstructured environments, thereby offering capabilities beyond traditional robots based on rigid components. Soft actuators are key components of soft robots; recently developed hydraulically amplified self‐healing electrostatic (HASEL) actuators provide a versatile framework to create high‐speed actuators with excellent all‐around performance. Peano‐HASEL actuators linearly contract upon application of voltage, closely mimicking the behavior of muscle. Peano‐HASEL actuators, however, produce a maximum strain of ≈15%, while skeletal muscles achieve ≈20% on average. Here, a new type of HASEL is introduced, termed high‐strain Peano‐HASEL (HS‐Peano‐HASEL) actuator, that achieves linear contraction up to ≈24%. A wide range of performance metrics are investigated, and the maximum strain of multiunit HS‐Peano‐HASEL actuators is optimized by varying materials and geometry. Furthermore, an artificial circular muscle (ACM) based on the HS‐Peano‐HASEL acts as a tubular pump, resembling the primordial heart of an ascidian. Additionally, a strain‐amplifying pulley system is introduced to increase the maximum strain of an HS‐Peano‐HASEL to 42%. The muscle‐like maximum actuation strain and excellent demonstrated all‐around performance of HS‐Peano‐HASEL actuators make them promising candidates for use in artificial organs, life‐like robotic faces, and a variety of other robotic systems.  相似文献   

12.
Biological soft robots have attracted extensive attention and research because of their superiority in executing designed biomedical missions compared with conventional robots. Here, inspired by the crawling mechanism of snakes and caterpillars, a novel biological soft robot composed of asymmetric claws, a carbon nanotube (CNT)‐induced myocardial tissue layer, and a structural color indicator is presented. The asymmetric claws can assist the whole soft robot to accomplish directional movement during the cardiomyocytes' contraction process. The oriented conduct of the CNT layer can regulate the cardiomyocytes' arrangement and improve their beating capability and the contraction performance. However, the structural color indicator provides a visualized monitoring approach to dynamically and immediately reflect the motion status of the biological soft robots. With these three functional layers, the cardiomyocyte‐driven soft robot can greatly simulate the crawling behavior of a caterpillar. It is demonstrated that by integrating these soft robots in a microfluidic organ‐on‐a‐chip system with multitrack construction, they can run along the tracks and exhibit different running speed based on the stimulus concentrations in the tracks. These features indicate the potential values of the cardiomyocyte‐driven soft robots for providing an effective screening platform for clinical diseases.  相似文献   

13.
Recent advances in miniature robotics have brought promising improvements in performance by leveraging the latest developments in soft materials, new fabrication schemes, and continuum actuation. Such devices can be used for applications that need delicate manipulation such as microsurgery or investigation of small‐scale biological samples. The shape memory effect of certain alloys is one of the promising actuation mechanisms at small scales because of its high work density and simple actuation mechanism. However, for sub‐millimeter devices, it is difficult to achieve complex and large displacement with shape memory alloy actuators because of the limitation in the fabrication process. Herein, a fabrication scheme for miniaturized smart soft composite actuator is proposed by utilizing two‐photon polymerization. The morphing modes are varied by changing the direction of the scaffold lamination. In addition, the actuation is controlled via local resistive heating of a carbon nanotube layer deposited inside of the actuators. The proposed design can generate a 390 µN force and achieve a bending angle up to 80°. Applications of the actuators are demonstrated by grasping small and delicate objects with single and two finger devices.  相似文献   

14.
2 nm thin gold nanowires (AuNWs) have extremely high aspect ratio (≈10 000) and are nanoscale soft building blocks; this is different from conventional silver nanowires (AgNWs), which are more rigid. Here, highly sensitive, stretchable, patchable, and transparent strain sensors are fabricated based on the hybrid films of soft/hard networks. They are mechanically stretchable, optically transparent, and electrically conductive and are fabricated using a simple and cost‐effective solution process. The combination of soft and more rigid nanowires enables their use as high‐performance strain sensors with the maximum gauge factor (GF) of ≈236 at low strain (<5%), the highest stretchability of up to 70% strain, and the optical transparency is from 58.7% to 66.7% depending on the amount of the AuNW component. The sensors can detect strain as low as 0.05% and are energy efficient to operate at a voltage as low as 0.1 V. These attributes are difficult to achieve with a single component of either AuNWs or AgNWs. The outstanding sensing performance indicates their potential applications as “invisible” wearable sensors for biometric information collection, as demonstrated in applications for detecting facial expressions, respiration, and apexcardiogram.  相似文献   

15.
MXene, which is known for its high electrical/thermal conductivity, surface hydrophilicity, excellent mechanical flexibility, and chemical stability, is a versatile and smart material for soft actuators. However, most MXene actuators are fabricated by combining MXene with other inert materials to form a bilayer or multilayer structure. Considering the strain mismatch at multimaterial interfaces under frequent deformation, MXene-based actuators are generally associated with poor stability, which limits their practical applications. Herein, inspired by the natural quantum-confined superfluidic (QSF) effect, a multiresponsive MXene actuator that can be driven by moisture, light, and electricity by engineering an asymmetric QSF structure on both sides of the MXene film is reported. The actuation mechanism of the MXene film can be attributed to nonuniform water adsorption, transport, and desorption within the asymmetric QSF channels under moisture, photothermal, and electrothermal stimuli. Interestingly, MXene actuators can be flexibly formed into various shapes under moisture-assisted mechanical compression, which not only enhances their multiresponsive actuation, but also permits a more complex deformation. As proof-of-concept demonstrations, various intriguing applications including a dual-role robot, a smart shielding curtain, and a dragonfly robot, are fabricated, revealing the potential of MXene actuators for soft robotics.  相似文献   

16.
Dielectric elastomer actuators (DEAs) have shown promises in numerous applications such as bio-inspired robotics, tactile displays, tunable optics, and microfluidics, owing to their unique combination of large actuation strain, high energy density, and light weight. However, the practical applications of the DEAs have been hindered partly due to their poor reliability and durability under high-strain actuation. A major failure mechanism is from the localized electrical breakdown. Compliant electrodes with self-clearing capability have been studied to prevent premature failures. Here, an interpenetrating bilayer compliant electrode comprising a thin layer of a water-based polyurethane (WPU) overcoated on an ultrathin single-walled carbon nanotube (SWNT) layer is reported. The thin polyurethane layer serves as the dielectric barrier to suppress corona discharges of the nanotubes in air. The SWNT+WPU bilayer electrode has the capability to self-clear at the breakdown sites, enhancing the fault tolerance and mendability of the DEA at a large-strain actuation. Stable actuation at 150% area strain for 1000 cycles under square-wave voltage and 5.5-h continuous actuation at a constant voltage have been achieved for acrylic elastomer-based DEAs.  相似文献   

17.
吴宏岐 《电子器件》2013,36(1):128-131
为满足特殊环境对于机器人的提出的要求,应用仿生学原理,设计一六足机器人,可模仿生物的运动形式;它以STC12C5A60S2型单片机为控制核心,通过YZW-Y09G型舵机来驱动的运动关节,选用AET168P1舵机控制板,在系统软件控制下来实现其各项功能.这种仿生六足机器人对各种地面有很强的适应能力,不易陷入松软地面里,且制作成本低,抗干扰能力强、灵敏度高、安全可靠,具有较高的使用价值.  相似文献   

18.
In this study, high‐performance ionic soft actuators are developed for the first time using collectively exhaustive boron and sulfur co‐doped porous carbon electrodes (BS‐COF‐Cs), derived from thiophene‐based boronate‐linked covalent organic framework (T‐COF) as a template. The one‐electron deficiency of boron compared to carbon leads to the generation of hole charge carriers, while sulfur, owing to its high electron density, creates electron carriers in BS‐COF‐C electrodes. This antagonistic functionality of BS‐COF‐C electrodes assists the charge‐transfer rate, leading to fast charge separation in the developed ionic soft actuator under alternating current input signals. Furthermore, the hierarchical porosity, high surface area, and synergistic effect of co‐doping of the BS‐COF‐Cs play crucial roles in offering effective interaction of BS‐COF‐Cs with poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), leading to the generation of high electro‐chemo‐mechanical performance of the corresponding composite electrodes. Finally, the developed ionic soft actuator based on the BS‐COF‐C electrode exhibits large bending strain (0.62%), excellent durability (90% retention for 6 hours under operation), and 2.7 times higher bending displacement than PEDOT:PSS under extremely low harmonic input of 0.5 V. This study reveals that the antagonistic functionality of heteroatom co‐doped electrodes plays a crucial role in accelerating the actuation performance of ionic artificial muscles.  相似文献   

19.
2D semiconductors are poised to revolutionize the future of electronics and photonics, much like transparent oxide conductors and semiconductors have revolutionized the display industry. Herein, these two types of materials are combined to realize fully transparent 2D electronic devices and circuits. Specifically, a large‐area chemical vapor deposition process is developed to grow monolayer MoS2 continuous films, which are, for the first time, combined with transparent conducting oxide (TCO) contacts. Transparent conducting aluminum doped zinc oxide contacts are deposited by atomic layer deposition, with composition tuning to achieve optimal conductivity and band‐offsets with MoS2. The optimized process gives fully transparent TCO/MoS2 2D electronics with average visible‐range transmittance of 85%. The transistors show high mobility (4.2 cm2 V?1 s?1), fast switching speed (0.114 V dec?1), very low threshold voltage (0.69 V), and large switching ratio (4 × 108). To our knowledge, these are the lowest threshold voltage and subthreshold swing values reported for monolayer chemical vapor deposition MoS2 transistors. The transparent inverters show fast switching properties with a gain of 155 at a supply voltage of 10 V. The results demonstrate that transparent conducting oxides can be used as contact materials for 2D semiconductors, which opens new possibilities in 2D electronic and photonic applications.  相似文献   

20.
Soft magnetic structures having a non-uniform magnetization profile can achieve multimodal locomotion that is helpful to operate in confined spaces. However, incorporating such magnetic anisotropy into their body is not straightforward. Existing methods are either limited in the anisotropic profiles they can achieve or too cumbersome and time-consuming to produce. Herein, a 3D printing method allowing to incorporate magnetic anisotropy directly into the printed soft structure is demonstrated. This offers at the same time a simple and time-efficient magnetic soft robot prototyping strategy. The proposed process involves orienting the magnetized particles in the magnetic ink used in the 3D printer by a custom electromagnetic coil system acting onto the particles while printing. The resulting structures are extensively characterized to confirm the validity of the process. The extent of orientation is determined to be between 92% and 99%. A few examples of remotely actuated small-scale soft robots that are printed through this method are also demonstrated. Just like 3D printing gives the freedom to print a large number of variations in shapes, the proposed method also gives the freedom to incorporate an extensive range of magnetic anisotropies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号