首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The origin of hysteresis behavior is probed in perovskite solar cells (PSCs) with simultaneous measurements of cell open circuit voltage (Voc) and photoluminescence intensity over time following illumination of the cell. It is shown, for the first time, that the transient changes in terminal voltage and luminescent intensity do not follow the relationship that would be predicted by the generalized Plank radiation law. A mechanism is proposed based on the presence of a resistive barrier to majority carrier flow at the interface between the perovskite film and the electron or hole transport layer, in combination with significant interface recombination. This results in a decoupling of the internal quasi‐Fermi level separation and the externally measured voltage. A simple numerical model is used to provide in‐principle validation for the proposed mechanism and it is confirmed that mobile ionic species are a likely candidate for creating the time‐varying majority carrier bottleneck by its reduced conductivity. The findings show that the Voc of PSCs may be lower than the limit imposed by the cell luminescence efficiency, even under steady‐state conditions.  相似文献   

2.
Organic–inorganic hybrid perovskite solar cells are attracting the attention of researchers owing to the high level of performance they exhibit in photovoltaic device applications. However, the attainment of an even higher level of performance is hindered by their anomalous current–voltage (IV) hysteresis behavior. Even though experimental and theoretical studies have suggested that the perovskite materials may have a ferroelectric nature, it is still far from being fully understood. In this study, the origin of the hysteresis behavior in CH3NH3PbI3 perovskite thin films is investigated. The behavior of ferroelectricity using piezoresponse force microscopy is first examined. Then, by comparing the scan‐rate‐dependent nano/macroscopic IV curves, it is found that ion migration assisted by the grain boundaries is a dominant origin of IV hysteresis from a macroscopic viewpoint. Consequently, the observations suggest that, even though ferroelectricity exists in the CH3NH3PbI3 perovskite materials, ion migration primarily contributes to the macroscopic IV hysteresis. The presented results can provide fundamental guidelines to the resolution of hysteresis issues in organic–inorganic hybrid perovskite materials.  相似文献   

3.
All-inorganic perovskite solar cells (PSCs) have been the research focus due to their high thermal stability and proper band gap for tandem solar cells. However, their power conversion efficiency (PCE) is still lower than that of organic-inorganic hybrid PSCs. Herein, a sacrificing dye (Rhodamine B isothiocyanate, RBITC) is developed to regulate the growth of perovskite film by in situ release of ethylammonium cations, isothiocyanate anions and benzoic acid molecules upon annealing and illumination. The ethylammonium cations can efficiently passivate surface defects. The isothiocyanate anions incorporate with uncoordinated Pb to regulate the crystallization process. The benzoic acid molecules facilitate the nucleation of the perovskite crystals. Especially, the illumination can accelerate the release of these beneficial ions/molecules to improve the quality of perovskite films further. After optimization with RBITC, a high open circuit voltage (VOC) of 1.24 V and a champion PCE of 20.95% are obtained, which are among the highest Voc and PCE values of CsPbI3 PSCs. Accordingly, the operational stability of the PSC devices is significantly improved. The results provide an efficient chemical strategy to regulate the formation of perovskite films in whole crystallization process for high performance all-inorganic PSCs.  相似文献   

4.
In a two-step procedure for fabricating perovskite films, the PbI2 layer formed on the substrate is converted to perovskite by reacting PbI2 with organic iodide. Excess PbI2 left after forming perovskite composition, however, might have an ill effect on device stability and current–voltage hysteresis, although it positively affects efficiency improvement.  Additive engineering is reported here on to control the residual PbI2 in a two-step procedure. A series of organic multi-ammonium chloride derivatives are introduced into the PbI2 precursor solution for the first-step coating, which results in an increase in the perovskite grain size. In addition, carrier lifetime is elongated due to the reduced trap density and the energetics are adjusted to facilitate the extraction of photogenerated carriers. The aminoguanidinium-containing precursor leads to an improved power conversion efficiency (PCE) as compared to the bare PbI2 precursor mainly due to the significantly enhanced open-circuit voltage and fill factor. Consequently, a PCE of 23.46% is achieved from the hysteresis-less photovoltaic parameters and 93% of the initial PCE is maintained after aging for 1000 h in ambient conditions.  相似文献   

5.
Perovskite solar cells (PSCs) are considered one of the most promising next‐generation examples of high‐tech photovoltaic energy converters, as they possess an unprecedented power conversion efficiency with low cost. A typical high‐performance PSC generally contains a perovskite active layer sandwiched between an electron‐transport layer (ETL) and a hole‐transport layer (HTL). The ETL and HTL contribute to the charge extraction in the PSC. However, these additional two layers complicate the manufacturing process and raise the cost. To extend this technology for commercialization, it is highly desired that the structure of PSCs is further simplified without sacrificing their photovoltaic performances. Thus, ETL‐free or/and HTL‐free PSCs are developed and attract more and more interest. Herein, the commonly used methods in reducing the defect density and optimizing the energy levels in conventional PSCs in order to simplify their structures are summarized. Then, the development of diverse ETL‐free or/and HTL‐free PSCs is discussed, with the PSCs classified, including their working principles, implemented technologies, remaining challenges, and future perspectives. The aim is to redirect the way toward low‐cost and high‐performance PSCs with the simplest possible architecture.  相似文献   

6.
Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to‐date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3‐xClx solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin‐film solution processed perovskite solar cells with no mesoporous layer.  相似文献   

7.
Chemical doping of organic semiconductors enables significant progress in improving their optoelectronic performance. However, the correlation between doping counter ions and charge-transport mechanism has not been yet well-understood. In this study, it is discovered that the anion-dependent degree of delocalization (DOD) of lithium-based dopants significantly determines the doping kinetics as well as the conductivity of organic hole transport layer (HTL), leading to large variation in solar cell efficiency and device stability. Specifically, the incorporation of bis(pentafluoroethanesulfonyl) imide (PFSI) as the anion with a high DOD results in one order of magnitude higher film conductivity and thus an elevated power conversion efficiency (PCE) exceeding 22.1%, much higher than the state-of-the-art lithium bis(trifluoromethane)sulfonimide (LiTFSI) (21.1%) and lithium hexafluorophosphate (LiPF6) (20.0%). Moreover, the dopant LiPF6 with a smaller DOD produces higher doping yield of HTL accompanied by stronger light-induced PCE fluctuation. Structural analysis reveals anion-modulated ion exchange kinetics determine the hole-transport mechanism and device photostability. To mitigate these detrimental effects, a versatile strategy of Li+ solvation is developed to modulate the anion dissociation, enabling simultaneous improvement of device efficiency and stability. This study elucidates an intriguing and generally applicable doping mechanism, and envisages a bright future to further developing efficient and stable organic electronics.  相似文献   

8.
High crystallinity and compactness of the active layer is essential for metal‐halide perovskite solar cells. Here, a simple pseudohalide‐induced film retreatment technology is developed as the passivation for preformed perovskite film. It is found that the retreatment process yields a controllable decomposition‐to‐recrystallization evolution of the perovskite film. Corresponding, it remarkably enlarges the grain size of the film in all directions, as well as improving the crystallinity and hindering the trap density. Meanwhile, owing to an intermediate catalytic effect of the pseudohalide compound (NH4SCN), no crystal orientation changing and no impurity introduction in the modified film. By integrating the modified perovskite film into the planar heterojunction solar cells, a champion power conversion efficiency of 19.44% with a stabilized output efficiency of 19.02% under 1 sun illumination is obtained, exhibiting a negligible current density–voltage hysteresis. Moreover, such a facile and low‐temperature film retreatment approach guarantees the application in flexible devices, showing a best power conversion efficiency of 17.04%.  相似文献   

9.
The sensitivity of organic–inorganic perovskites to environmental factors remains a major barrier for these materials to become commercially viable for photovoltaic applications. In this work, the degradation of formamidinium lead iodide (FAPbI3) perovskite in a moist environment is systematically investigated. It is shown that the level of relative humidity (RH) is important for the onset of degradation processes. Below 30% RH, the black phase of the FAPbI3 perovskite shows excellent phase stability over 90 d. Once the RH reaches 50%, degradation of the FAPbI3 perovskite occurs rapidly. Results from a Kelvin probe force microscopy study reveal that the formation of nonperovskite phases initiates at the grain boundaries and the phase transition proceeds toward the grain interiors. Also, ion migration along the grain boundaries is greatly enhanced upon degradation. A post‐thermal treatment (PTT) that removes chemical residues at the grain boundaries which effectively slows the degradation process is developed. Finally, it is demonstrated that the PTT process improves the performance and stability of the final device.  相似文献   

10.
Organic–inorganic metal halide perovskite solar cells (PSCs) have attracted much research interest owing to their high power conversion efficiency (PCE), solution processability, and the great potential for commercialization. However, the device performance is closely related to the quality of the perovskite film and the interface properties, which cannot be easily controlled by solution processes. Here, 2D WS2 flakes with defect‐free surfaces are introduced as a template for van der Waals epitaxial growth of mixed perovskite films by solution process for the first time. The mixed perovskite films demonstrate a preferable growth along (001) direction on WS2 surfaces. In addition, the WS2/perovskite heterojunction forms a cascade energy alignment for efficient charge extraction and reduced interfacial recombination. The inverted PSCs with WS2 interlayers show high PCEs up to 21.1%, which is among the highest efficiency of inverted planar PSCs. This work demonstrates that high‐mobility 2D materials can find important applications in PSCs as well as other perovskite‐based optoelectronic devices.  相似文献   

11.
The self-assembled hole transporting molecules (SAHTMs) bearing anchoring groups have been established as the hole transporting layers (HTLs) for highly efficient p–i–n perovskite solar cells (PSCs), yet their stability and engineering at the molecular level remain challenging. A topological design of highly anisotropic aligned SAHTM-based HTLs for operationally stable PSCs that exhibit exceptional solar-to-electric power conversion efficiencies (PCEs) is demonstrated. The judiciously designed multifunctional self-assembled molecules comprise the donor–acceptor subunit for hole transporting and the phosphonic acid group for anchoring, realizing face-on π-stacking parallel to the transparent conductive oxide substrate. The high affinity of SAHTMs to the multi-crystalline perovskite thin film benefits passivating the perovskite buried interface, strengthening interfacial contact while facilitating interfacial hole transfer. Consequently, highly efficient p–i–n PSC devices are obtained with a champion PCE of 23.24% and outstanding operational stability toward various environmental factors including long-term full sunlight soaking at evaluated temperatures. Perovskite solar modules with a champion efficiency approaching 20% are also fabricated for an active device area above 17 cm2.  相似文献   

12.
13.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

14.
15.
While there is promising achievement in terms of the power conversion efficiency (PCE) of perovskite solar cells (PSCs), long-term stability has been considered the main obstacle for their practical application. In this work, the authors demonstrate the small monomer 2-(dimethylamino) ethyl methacrylate (DMAEMA) with unsaturated carboxylic acid ester bond in the antisolvent for perovskite formation to improve the PCE and stability. The results show that DMAEMA is self-polymerized and uniformly distributed in the film, contributing to the improved crystallinity of the perovskites. Equally important, it is found that there are newly established interactions of Pb2+ and DMAEMA, and iodine and ternary amine between DMAEMA and perovskites, which improves the uniformity of the lead (II) iodide vertical distribution along with the films and thus phase stability, as well as largely decreases defects density in the film. Overall, the inverted PSCs with DMAEMA exhibit a open-circuit voltage of 1.10 V, short-circuit current of 23.86 mA cm?2, fill factor of 0.82, and finally PCE reaches 21.52%. Meanwhile, the PSC stability is significantly improved due to the inhibition of the formation of iodine, reduction of the uncoordinated Pb2+, and suppression of phase segregation.  相似文献   

16.
Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state-of-the-art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5-dichloroterephthalic acid (DCTPA) into the interface between the SnO2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO2 but also can regulate the perovskite crystal growth and reduce defect-assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA-modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm2 device and 17.52 cm2 mini-module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long-term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO2 and perovskite to improve the performance of PSCs .  相似文献   

17.
Reversible photo‐induced performance deterioration is observed in mesoporous TiO2‐containing devices in an inert environment. This phenomenon is correlated with the activation of deep trap sites due to astoichiometry of the metal oxide. Interestingly, in air, these defects can be passivated by oxygen adsorption. These results show that the doping of TiO2 with aluminium has a striking impact upon the density of sub‐gap states and enhances the conductivity by orders of magnitude. Dye‐sensitized and perovskite solar cells employing Al‐doped TiO2 have increased device efficiencies and significantly enhanced operational device stability in inert atmospheres. This performance and stability enhancement is attributed to the substitutional incorporation of Al in the anatase lattice, “permanently” passivating electronic trap sites in the bulk and at the surface of the TiO2.  相似文献   

18.
PbTiO3 (PTO) is explored as a versatile and tunable electron‐selective layer (ESL) for perovskite solar cells. To demonstrate effectiveness of PTO for electron–hole separation and charge transfer, perovskite solar cells are designed and fabricated in the laboratory with the PTO as the ESL. The cells achieve a power conversion efficiency (PCE) of ≈12.28% upon preliminary optimization. It is found that the PTO ferroelectric layer can not only increase the PCE, but also tune the photocurrent via tuning PTO's ferroelectric polarization. Moreover, to understand the physical mechanism underlying the carrier transport by the ferroelectric polarization, the electronic structure of PTO/CH3NH3PbI3 heterostructure is computed using the first‐principles methods, for which the triplet state is used to simulate charge transfer in the heterostructure. It is shown that the synergistic effect of type II band alignment and the specific ferroelectric polarization direction provide the effective extraction of electrons from the light absorber, while minimize recombination of photogenerated electron–hole pairs. Overall, the ferroelectric PTO is a promising and tunable ESL for optimizing electron transport in the perovskite solar cells. The design offers a different strategy for altering direction of carrier transport in solar cells.  相似文献   

19.
Perovskite solar cells (PSCs) are demonstrating great potential to compete with second generation photovoltaics. Nevertheless, the key issue hindering PSCs full exploitation relies on their stability. Among the strategies devised to overcome this problem, the use of carbon nanostructures (CNSs) as hole transporting materials (HTMs) has given impressive results in terms of solar cells stability to moisture, air oxygen, and heat. Here, the use of a HTM based on a poly(3‐hexylthiophene) (P3HT) matrix doped with organic functionalized single walled carbon nanotubes (SWCNTs) and reduced graphene oxide in PSCs is proposed to achieve higher power conversion efficiencies (η = 11% and 7.3%, respectively) and prolonged shelf‐life stabilities (480 h) in comparison with a benchmark PSC fabricated with a bare P3HT HTM (η = 4.3% at 480 h). Further endurance test, i.e., up to 3240 h, has shown the failure of all the PSCs based on undoped P3HT, while, on the contrary, a η of ≈8.7% is still detected from devices containing 2 wt% SWCNT‐doped P3HT as HTM. The increase in photovoltaic performances and stabilities of the P3HT‐CNS‐based solar cell, with respect to the standard P3HT‐based one, is attributed to the improved interfacial contacts between the doped HTM and the adjacent layers.  相似文献   

20.
Cesium‐based inorganic perovskites, such as CsPbI2Br, are promising candidates for photovoltaic applications owing to their exceptional optoelectronic properties and outstanding thermal stability. However, the power conversion efficiency of CsPbI2Br perovskite solar cells (PSCs) is still lower than those of hybrid PSCs and inorganic CsPbI3 PSCs. In this work, passivation and n‐type doping by adding CaCl2 to CsPbI2Br is demonstrated. The crystallinity of the CsPbI2Br perovskite film is enhanced, and the trap density is suppressed after adding CaCl2. In addition, the Fermi level of the CsPbI2Br is changed by the added CaCl2 to show heavy n‐type doping. As a result, the optimized CsPbI2Br PSC shows a highest open circuit voltage of 1.32 V and a record efficiency of 16.79%. Meanwhile, high air stability is demonstrated for a CsPbI2Br PSC with 90% of the initial efficiency remaining after more than 1000 h aging in air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号