首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
As an interesting layered material, molybdenum disulfide (MoS2) has been extensively studied in recent years due to its exciting properties. However, the applications of MoS2 in optoelectronic devices are impeded by the lack of high‐quality p–n junction, low light absorption for mono‐/multilayers, and the difficulty for large‐scale monolayer growth. Here, it is demonstrated that MoS2 films with vertically standing layered structure can be deposited on silicon substrate with a scalable sputtering method, forming the heterojunction‐type photodetectors. Molecular layers of the MoS2 films are perpendicular to the substrate, offering high‐speed paths for the separation and transportation of photo‐generated carriers. Owing to the strong light absorption of the relatively thick MoS2 film and the unique vertically standing layered structure, MoS2/Si heterojunction photodetectors with unprecedented performance are actualized. The self‐driven MoS2/Si heterojunction photodetector is sensitive to a broadband wavelength from visible light to near‐infrared light, showing an extremely high detectivity up to ≈1013 Jones (Jones = cm Hz1/2 W?1), and an ultrafast response speed of ≈3 μs. The performance is significantly better than the photodetectors based on mono‐/multilayer MoS2 nanosheets. Additionally, the MoS2/Si photodetectors exhibit excellent stability in air for a month. This work unveils the great potential of MoS2/Si heterojunction for optoelectronic applications.  相似文献   

2.
2D materials have shown great promise for next-generation high-performance photodetectors. However, the performance of photodetectors based on 2D materials is generally limited by the tradeoff between photoresponsivity and photodetectivity. Here, a novel junction field-effect transistor (JFET) photodetector consisting of a PdSe2 gate and MoS2 channel is constructed to realize high responsivity and high detectivity through effective modulation of top junction gate and back gate. The JFET exhibits high carrier mobility of 213 cm2 V−1 s−1. What is more, the high responsivity of 6 × 102 A W−1, as well as the high detectivity of 1011 Jones, are achieved simultaneously through the dual-gate modulation. The high performance is attributed to the modulation of the depletion region by the dual-gate, which can effectively suppress the dark current and enhance the photocurrent, thereby realizing high detectivity and responsivity. The JFET photodetector provides a new approach to realize photodetectors with high responsivity and detectivity.  相似文献   

3.
The very recently rediscovered group‐10 transition metal dichalcogenides (TMDs) such as PtS2 and PtSe2, have joined the 2D material family as potentially promising candidates for electronic and optoeletronic applications due to their theoretically high carrier mobility, widely tunable bandgap, and ultrastability. Here, the first exploration of optoelectronic application based on few‐layered PtS2 using h‐BN as substrate is presented. The phototransistor exhibits high responsivity up to 1.56 × 103 A W?1 and detectivity of 2.9 × 1011 Jones. Additionally, an ultrahigh photogain ≈2 × 106 is obtained at a gate voltage V g = 30 V, one of the highest gain among 2D photodetectors, which is attributed to the existence of trap states. More interestingly, the few‐layered PtS2 phototransistor shows a back gate modulated photocurrent generation mechanism, that is, from the photoconductive effect dominant to photogating effect dominant via tuning the gate voltage from the OFF state to the ON state. Such good properties combined with gate‐controlled photoresponse of PtS2 make it a competitive candidate for future 2D optoelectronic applications.  相似文献   

4.
In recent years, 2D layered materials have been considered as promising photon absorption channel media for next‐generation phototransistors due to their atomic thickness, easily tailored single‐crystal van der Waals heterostructures, ultrafast optoelectronic characteristics, and broadband photon absorption. However, the photosensitivity obtained from such devices, even under a large bias voltage, is still unsatisfactory until now. In this paper, high‐sensitivity phototransistors based on WS2 and MoS2 are proposed, designed, and fabricated with gold nanoparticles (AuNPs) embedded in the gate dielectric. These AuNPs, located between the tunneling and blocking dielectric, are found to enable efficient electron trapping in order to strongly suppress dark current. Ultralow dark current (10?11 A), high photoresponsivity (1090 A W?1), and high detectivity (3.5 × 1011 Jones) are obtained for the WS2 devices under a low source/drain and a zero gate voltage at a wavelength of 520 nm. These results demonstrate that the floating‐gate memory structure is an effective configuration to achieve high‐performance 2D electronic/optoelectronic devices.  相似文献   

5.
Most doping research into transition metal dichalcogenides (TMDs) has been mainly focused on the improvement of electronic device performance. Here, the effect of self‐assembled monolayer (SAM)‐based doping on the performance of WSe2‐ and MoS2‐based transistors and photodetectors is investigated. The achieved doping concentrations are ≈1.4 × 1011 for octadecyltrichlorosilane (OTS) p‐doping and ≈1011 for aminopropyltriethoxysilane (APTES) n‐doping (nondegenerate). Using this SAM doping technique, the field‐effect mobility is increased from 32.58 to 168.9 cm2 V?1 s in OTS/WSe2 transistors and from 28.75 to 142.2 cm2 V?1 s in APTES/MoS2 transistors. For the photodetectors, the responsivity is improved by a factor of ≈28.2 (from 517.2 to 1.45 × 104 A W?1) in the OTS/WSe2 devices and by a factor of ≈26.4 (from 219 to 5.75 × 103 A W?1) in the APTES/MoS2 devices. The enhanced photoresponsivity values are much higher than that of the previously reported TMD photodetectors. The detectivity enhancement is ≈26.6‐fold in the OTS/WSe2 devices and ≈24.5‐fold in the APTES/MoS2 devices and is caused by the increased photocurrent and maintained dark current after doping. The optoelectronic performance is also investigated with different optical powers and the air‐exposure times. This doping study performed on TMD devices will play a significant role for optimizing the performance of future TMD‐based electronic/optoelectronic applications.  相似文献   

6.
2D materials are promising to overcome the scaling limit of Si field‐effect transistors (FETs). However, the insulator/2D channel interface severely degrades the performance of 2D FETs, and the origin of the degradation remains largely unexplored. Here, the full energy spectra of the interface state densities (Dit) are presented for both n‐ and p‐ MoS2 FETs, based on the comprehensive and systematic studies, i.e., full rage of channel thickness and various gate stack structures with h‐BN as well as high‐k oxides. For n‐MoS2, Dit around the mid‐gap is drastically reduced to 5 × 1011 cm?2 eV?1 for the heterostructure FET with h‐BN from 5 × 1012 cm?2 eV?1 for the high‐k top‐gate. On the other hand, Dit remains high, ≈ 1013 cm?2 eV?1, even for the heterostructure FET for p‐MoS2. The systematic study elucidates that the strain induced externally through the substrate surface roughness and high‐k deposition process is the origin for the interface degradation on conduction band side, while sulfur‐vacancy‐induced defect states dominate the interface degradation on valance band side. The present understanding of the interface properties provides the key to further improving the performance of 2D FETs.  相似文献   

7.
2D transition metal dichalcogenides are emerging with tremendous potential in many optoelectronic applications due to their strong light–matter interactions. To fully explore their potential in photoconductive detectors, high responsivity is required. Here, high responsivity phototransistors based on few‐layer rhenium disulfide (ReS2) are presented. Depending on the back gate voltage, source drain bias and incident optical light intensity, the maximum attainable photoresponsivity can reach as high as 88 600 A W?1, which is a record value compared to other individual 2D materials with similar device structures and two orders of magnitude higher than that of monolayer MoS2. Such high photoresponsivity is attributed to the increased light absorption as well as the gain enhancement due to the existence of trap states in the few‐layer ReS2 flakes. It further enables the detection of weak signals, as successfully demonstrated with weak light sources including a lighter and limited fluorescent lighting. Our studies underscore ReS2 as a promising material for future sensitive optoelectronic applications.  相似文献   

8.
Atomically thin 2D layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, the fabrication of ReS2 field‐effect transistors is reported via the encapsulation of ReS2 nanosheets in a high‐κ Al2O3 dielectric environment. Low‐temperature transport measurements allow to observe a direct metal‐to‐insulator transition originating from strong electron–electron interactions. Remarkably, the photodetectors based on ReS2 exhibit gate‐tunable photoresponsivity up to 16.14 A W?1 and external quantum efficiency reaching 3168%, showing a competitive device performance to those reported in graphene, MoSe2, GaS, and GaSe‐based photodetectors. This study unambiguously distinguishes ReS2 as a new candidate for future applications in electronics and optoelectronics.  相似文献   

9.
2D SnS2 nanosheets have been attracting intensive attention as one potential candidate for the modern electronic and/or optoelectronic fields. However, the controllable large‐size growth of ultrathin SnS2 nanosheets still remains a great challenge and the photodetectors based on SnS2 nanosheets suffer from low responsivity, thus hindering their further applications so far. Herein, an improved chemical vapor deposition route is provided to synthesize large‐size SnS2 nanosheets, the side length of which can surpass 150 μm. Then, ultrathin SnS2 nanosheet‐based phototransistors are fabricated, which achieve high photoresponsivities up to 261 A W?1 (with a fast rising time of 20 ms and a falling time of 16 ms) in air and 722 A W?1 in vacuum, respectively. Furthermore, the effects of back‐gate voltage and air adsorbates on the optoelectronic properties of the SnS2 nanosheet have been systematically investigated. In addition, a high‐performance flexible photodetector based on SnS2 nanosheet is also fabricated with a high responsivity of 34.6 A W?1.  相似文献   

10.
2D transition metal dichalcogenides are promising candidates for high‐performance photodetectors. However, the relatively low response speed as well as the complex transfer process hinders their wide applications. Herein, for the first time, the fabrication of a few‐layer MoTe2/Si 2D–3D vertical heterojunction for high‐speed and broadband photodiodes by a pulsed laser deposition technique is reported. Owing to the high junction quality, ultrathin MoTe2 film thickness, and unique vertical n–n heterojunction structure, the photodiode exhibits excellent device performance in terms of a high responsivity of 0.19 A W?1 and a large detectivity of 6.8 × 1013 Jones. The device is also capable of detecting a broadband light with wavelength spanning from 300 to 1800 nm. More importantly, the device possesses an ultrahigh response speed up to 150 ns with a 3‐dB electrical bandwidth approaching 0.12 GHz. This work paves the way toward the fabrication of novel 2D–3D heterojunctions for high‐performance, ultrafast photodetectors.  相似文献   

11.
A novel hybrid phototransistor consisting of molybdenum carbide (Mo2C) and molybdenum disulfide (MoS2) is proposed. By exploiting the interface properties of MoS2 and Mo2C, a highly sensitive and broad‐spectral response photodetector is fabricated. The underlying mechanism of the enhanced performance is the efficient hot carrier injection from Mo2C to MoS2. The strong coupling of MoS2 and Mo2C at the interface provides the significantly low Schottky barrier height (≈70 meV), which gives rise to the significantly efficient hot carrier transfer from Mo2C to MoS2. The grating of metallic Mo2C produces plasmonic resonance, which provides hot carriers to the MoS2 channel. By adjusting the grating period of Mo2C (400–1000 nm), the optimal photoresponse of light can be controlled, from visible to NIR. By integrating various Mo2C multigrating periods (400–1000 nm) with MoS2, a novel photodetector is demonstrated with high responsivity (R > 103 A W?1) and light‐to‐dark current ratio (>102) over a broad spectral range (405–1310 nm). The proposed novel hybrid photodetector, 2D semiconductors with multigrating 2D metallic stripes, exhibits high sensitivity and broad spectral detection of light and can overcome the inherent weakness of conventional 2D photodetectors, paving the way forward for next‐generation photoelectric devices.  相似文献   

12.
A facile one‐step spraying synthesis of MoS2/C microspheres and their enhanced electrochemical performance as anode of sodium‐ion batteries is reported. An aerosol spraying pyrolysis without any template is employed to synthesize MoS2/C microspheres, in which ultrathin MoS2 nanosheets (≈2 nm) with enlarged interlayers (≈0.64 nm) are homogeneously embedded in mesoporous carbon microspheres. The as‐synthesized mesoporous MoS2/C microspheres with 31 wt% carbon have been applied as an anode material for sodium ion batteries, demonstrating long cycling stability (390 mAh g?1 after 2500 cycles at 1.0 A g?1) and high rate capability (312 mAh g?1 at 10.0 A g?1 and 244 mAh g?1 at 20.0 A g?1). The superior electrochemical performance is due to the uniform distribution of ultrathin MoS2 nanosheets in mesoporous carbon frameworks. This kind of structure not only effectively improves the electronic and ionic transport through MoS2/C microspheres, but also minimizes the influence of pulverization and aggregation of MoS2 nanosheets during repeated sodiation and desodiation.  相似文献   

13.
Exploring a universal strategy to implement the precise control of 2D nanomaterials in size and layer number is a big challenge for achieving ultrafast and stable Li/Na‐ion batteries. Herein, the confined synthesis of 1–3 layered MoS2 nanocrystals into 2D Ti3C2 interlayer nanospace with the help of electrostatic attraction and subsequent cetyltrimethyl ammonium bromide (CTAB) directed growth is reported. The MoS2 nanocrystals are tightly anchored into the interlayer by 2D confinement effect and strong Mo? C covalent bond. Impressively, the disappearance of Li+ intercalated into MoS2 reduction peak is successfully observed for the first time in the experiment, showing in a typical surface‐controlled charge storage behavior. The pseudocapacitance‐dominated contribution guarantees a much faster and more stable Li/Na storage performance. As predicted, this electrode exhibits a very high Li+ storage capacity of 340 mAh g?1 even at 20 A g?1 and a long cycle life (>1000 times). It also shows an excellent Na+ storage capacity of 310 mAh g?1 at 1 A g?1 with a 1600 times high‐rate cycling. Such impressive confined synthesis strategy can be extended to the precise control of other 2D nanomaterials.  相似文献   

14.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

15.
Zn3As2 is an important p‐type semiconductor with the merit of high effective mobility. The synthesis of single‐crystalline Zn3As2 nanowires (NWs) via a simple chemical vapor deposition method is reported. High‐performance single Zn3As2 NW field‐effect transistors (FETs) on rigid SiO2/Si substrates and visible‐light photodetectors on rigid and flexible substrates are fabricated and studied. As‐fabricated single‐NW FETs exhibit typical p‐type transistor characteristics with the features of high mobility (305.5 cm2 V?1 s?1) and a high Ion/Ioff ratio (105). Single‐NW photodetectors on SiO2/Si substrate show good sensitivity to visible light. Using the contact printing process, large‐scale ordered Zn3As2 NW arrays are successfully assembled on SiO2/Si substrate to prepare NW thin‐film transistors and photodetectors. The NW‐array photodetectors on rigid SiO2/Si substrate and flexible PET substrate exhibit enhanced optoelectronic performance compared with the single‐NW devices. The results reveal that the p‐type Zn3As2 NWs have important applications in future electronic and optoelectronic devices.  相似文献   

16.
2D microscale position‐sensitive detectors (PSDs) are highly desirable with the degree of integration increase and the size reduction of nanodevices, which are still unavailable. Multichannel devices with outstanding photoelectric properties attract considerable interest as powerful building blocks to be applied in on‐chip systems. Here, based on a highly ordered comb‐like CdS nanowire array with cone‐shape branches through a one‐step synthesis strategy, a high‐resolution 2D position‐sensitive photodetector is realized through variable resistance in different transportation routes and variable optical responses at different parts of the cone‐shape branches, which enable accurate position identification of incident light in various zones of nanowire arrays according to photocurrent changes. In a broadband from 310 to 560 nm, the PSD exhibits high sensitivity with 85 and 58 KΩ µm?1 in the trunk and branch part, respectively, and an ultrafast optical response shorter than tens of millisecond. Moreover, a lower conductivity change rate per unit temperature of the PSD (1.625 × 10?9 A V?1 K?1) than that of commercial Si‐based PSDs (≈6.67 × 10?7 A V?1 K?1) reveals outstanding low‐temperature performance. Finally, the multichannel nanostructure based PSD with nanoscale resolution is applied to high‐accuracy quadrant photodetectors.  相似文献   

17.
A 3D solar‐blind photodetector array is realized from amorphous Ga2O3 films grown on polyethylene terephthalate substrates via an origami route. The photodetector cells exhibit a dark current of 0.17 nA, and the peak responsivity is about 8.9 A W?1 at 250 nm with a quantum efficiency of 4450%. The photodetector shows a distinct cut‐off wavelength at 268 nm with a solar‐blind ratio of more than two orders of magnitude (photocurrent ratio between 250 nm/300 nm). The photodetector cells reveal excellent electrical stability after thousands of bending cycles. All the photodetector cells of the 3D photodetector array have a highly consistent performance. In addition, the device can execute the functions of capturing a real‐time light trajectory and identifying multipoint light spatial distribution, which cannot be achieved in all the previously reported 2D solar‐blind photodetectors. The results suggest new pathways to fabricate 3D photodetectors from conventional semiconductor films, which may find potential applications in optical positioning, tracking, imaging and communications, etc.  相似文献   

18.
Nanoelectronics is in urgent demand of exceptional device architecture with ultrathin thickness below 10 nm and dangling‐bond‐free surface to break through current physical bottleneck and achieve new record of integration level. The advance in 2D van der Waals materials endows scientists with new accessibility. This study reports an all‐layered 2D Bi2Te3‐SnSe‐Bi2Te3 photodetector, and the broadband photoresponse of the device from ultraviolet (370 nm) to near‐infrared (808 nm) is demonstrated. In addition, the optimized responsivity reaches 5.5 A W?1, with the corresponding eternal quantum efficiency of 1833% and detectivity of 6 × 1010 cm Hz1/2 W?1. These figures‐of‐merits are among the best values of the reported all‐layered 2D photodetectors, which are several orders of magnitude higher than those of the previous SnSe photodetectors. The superior device performance is attributed to the synergy of highly conductive surface state of Bi2Te3 topological insulator, perfect band alignment between Bi2Te3 and SnSe as well as small interface potential fluctuation. Meanwhile, the all‐layered 2D device is further constructed onto flexible mica substrate and its photoresponse is maintained roughly unchanged upon 60 bending cycles. The findings represent a fundamental scenario for advancement of the next generation high performance and high integration level flexible optoelectronics.  相似文献   

19.
P‐n junctions based on two dimensional (2D) van der Waals (vdW) heterostructure are one of the most promising alternatives in next‐generation electronics and optoelectronics. By choosing different 2D transition metal dichalcogenides (TMDCs), the p‐n junctions have tailored energy band alignments and exhibit superior performance as photodetectors. The p‐n diodes working at reverse bias commonly have high detectivity due to suppressed dark current but suffer from low responsivity resulting from small quantum efficiency. Greater build‐in electric field in the depletion layer can improve the quantum efficiency by reducing recombination of charge carriers. Herein, Cu9S5, a novel p‐type semiconductor with direct bandgap and high optical absorption coefficient, is synthesized by salt‐assisted chemical vapor deposition (CVD) method. The high density of holes in Cu9S5 endows the constructed p‐n junction, Cu9S5/MoS2, with strong build‐in electric field according to Anderson heterojunction model. Consequently, the Cu9S5/MoS2 p‐n heterojunction has low dark current at reverse bias and high photoresponse under illumination due to the efficient charge separation. The Cu9S5/MoS2 photodetector exhibits good photodetectivity of 1.6 × 1012 Jones and photoresponsivity of 76 A W?1 under illumination. This study demonstrates Cu9S5 as a promising p‐type semiconductor for high‐performance p‐n heterojunction diodes.  相似文献   

20.
Exploring TiO2‐photocatalysts for sunlight conversion has high demand in artificial photosynthesis. In this work, edge‐enriched ultrathin molybdenum disulfide (MoS2) flakes are uniformly embedded into the bulk of yolk‐shell TiO2 as a cocatalyst to accelerate photogenerated‐electron transfer from the bulk to the surface of TiO2. The as‐formed MoS2/TiO2 (0.14 wt%) hybrids exhibit a high hydrogen evolution rate (HER) of 2443 µmol g?1 h?1, about 1000% and 470% of that of pristine TiO2 (247 µmol g?1 h?1) and bulk MoS2 decorated TiO2 (513 µmol g?1 h?1). Such a greatly enhanced HER is attributed to the exposed catalytic edges of the ultrathin MoS2 flakes with a robust chemical linkage (Ti? S bond), providing rapid charge transfer channels between TiO2 and MoS2. The catalytic stability is promoted by the antiaggregation of the highly dispersed MoS2 flakes in the bulk of yolk‐shell TiO2. The exponential fitted decay kinetics of time‐resolved photoluminescence (ns‐PL) spectra illustrates that embedding ultrathin MoS2 flakes in TiO2 effectively decreases the average lifetime of PL in the MoS2/TiO2 hybrids (τave = 4.55 ns), faster than that of pristine TiO2 (≈7.17 ns) and the bulk MoS2/TiO2 (≈6.13 ns), allowing a superior charge separation and charge trapping process for reducing water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号