首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing high‐performance thermoelectric materials is one of the crucial aspects for direct thermal‐to‐electric energy conversion. Herein, atomic scale point defect engineering is introduced as a new strategy to simultaneously optimize the electrical properties and lattice thermal conductivity of thermoelectric materials, and (Bi,Sb)2(Te,Se)3 thermoelectric solid solutions are selected as a paradigm to demonstrate the applicability of this new approach. Intrinsic point defects play an important role in enhancing the thermoelectric properties. Antisite defects and donor‐like effects are engineered in this system by tuning the formation energy of point defects and hot deformation. As a result, a record value of the figure of merit ZT of ≈1.2 at 445 K is obtained for n‐type polycrystalline Bi2Te2.3Se0.7 alloys, and a high ZT value of ≈1.3 at 380 K is achieved for p‐type polycrystalline Bi0.3Sb1.7Te3 alloys, both values being higher than those of commercial zone‐melted ingots. These results demonstrate the promise of point defect engineering as a new strategy to optimize thermoelectric properties.  相似文献   

2.
Black phosphorus (BP) has emerged as a promising thermoelectric candidate because of its strong electronic and thermal anisotropy, suggesting a large σ/κ ratio can be realized by controlling carrier transport orientation for a potentially high ZT. Nevertheless, to date, low conversion efficiency (ZT ≈0.08, 300 K) and poor stability of BP remain the major issues that have hampered its practical applications. This work reports a material family in simple composition XP7, XP3, and XP (X = N, As, Sb, Bi) with high‐performance thermoelectric properties by first‐principles calculations. Strikingly, an ultrahigh ZT up to 1.21 at 300 K is achieved in p‐type BiP7 with an optimal carrier concentration of 5.48 × 1019 cm?3 and ZT in n‐type NP3 can reach up to ≈0.87 at the electron concentration of 3.67 × 1019 cm?3 along the zigzag direction, owing to their enhanced density of states and multivalley band structures around the Fermi level through the resonant effects of VA guest and host atoms. Additionally, the calculations demonstrate further improvement in thermoelectric performance of pristine BP by ≈4.8 and 4.5 times at 800 K in p‐type NP and n‐type NP3, respectively. Considering the high stability, current results indicate that N–P based systems are highly promising for novel metal‐free, nontoxic, and ultralight thermoelectrics.  相似文献   

3.
In this report an alternative approach for optimization of the thermoelectric properties of half-Heusler compounds is presented. The common approaches are partial substitution of elements by elements of nearby groups and substitution with homologs. In this approach we substitute one element by one neighboring element with fewer valence electrons and by one with more electrons. The amounts of the substitutions are chosen such that the amount of deficiency and excess electrons are compensated. In the solid solution TiCox(Ni0.5Fe0.5)1-xSb\hbox{TiCo}_{x}(\hbox{Ni}_{0.5}\hbox{Fe}_{0.5})_{1-x}\hbox{Sb}, Co was substituted equally by Fe and Ni. The aim of the substitution was to improve the figure of merit by a reduction of the thermal conductivity accompanied by an unchanged high Seebeck coefficient. The solid solution TiCox(Ni0.5Fe0.5)1-xSb\hbox{TiCo}_{x}(\hbox{Ni}_{0.5}\hbox{Fe}_{0.5})_{1-x}\hbox{Sb} was synthesized by arc-melting. The structure of the as-cast samples was analyzed by x-ray diffraction. Rietveld refinements yielded the C1bC1_b structure type with a small amount of antisite disorder between Co and Sb. The thermoelectric properties of the solid solution were investigated in the temperature range from 2 K to 400 K. A Seebeck coefficient of -260 mV K-1-260\,\mu\hbox{V\,K}^{-1} at 400 K and a reduction of the thermal conductivity to 3 Wm-1 K-13\,\hbox{Wm}^{-1}\,\hbox{K}^{-1} were measured. The figure of merit was enhanced by a factor of about seven to a value of 0.04 at 400 K for TiCo0.8(Ni0.1Fe0.1)Sb\hbox{TiCo}_{0.8}(\hbox{Ni}_{0.1}\hbox{Fe}_{0.1})\hbox{Sb}.  相似文献   

4.
Typical 18‐electron half‐Heusler compounds, ZrNiSn and NbFeSb, are identified as promising high‐temperature thermoelectric materials. NbCoSb with nominal 19 valence electrons, which is supposed to be metallic, is recently reported to also exhibit thermoelectric properties of a heavily doped n‐type semiconductor. Here for the first time, it is experimentally demonstrated that the nominal 19‐electron NbCoSb is actually the composite of 18‐electron Nb0.8+δCoSb (0 ≤ δ < 0.05) and impurity phases. Single‐phase Nb0.8+δCoSb with intrinsic Nb vacancies, following the 18‐electron rule, possesses improved thermoelectric performance, and the slight change in the content of Nb vacancies has a profound effect on the thermoelectric properties. The carrier concentration can be controlled by varying the Nb deficiency, and the optimization of the thermoelectric properties can be realized within the narrow pure phase region. Benefiting from the elimination of impurity phases and the optimization of carrier concentration, thermoelectric performance is remarkably enhanced by ≈100% and a maximum zT of 0.9 is achieved in Nb0.83CoSb at 1123 K. This work expands the family of half‐Heusler thermoelectric materials and opens a new avenue for searching for nominal 19‐electron half‐Heusler compounds with intrinsic vacancies as promising thermoelectric materials.  相似文献   

5.
The development of highly efficient bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for improving the efficiency of overall water splitting, but still remains challenging issue. Herein, 3D self‐supported Fe‐doped Ni2P nanosheet arrays are synthesized on Ni foam by hydrothermal method followed by in situ phosphorization, which serve as bifunctional electrocatalysts for overall water splitting. The as‐synthesized (Ni0.33Fe0.67)2P with moderate Fe doping shows an outstanding OER performance, which only requires an overpotential of ≈230 mV to reach 50 mA cm?2 and is more efficient than the other Fe incorporated Ni2P electrodes. In addition, the (Ni0.33Fe0.67)2P exhibits excellent activity toward HER with a small overpotential of ≈214 mV to reach 50 mA cm?2. Furthermore, an alkaline electrolyzer is measured using (Ni0.33Fe0.67)2P electrodes as cathode and anode, respectively, which requires cell voltage of 1.49 V to reach 10 mA cm?2 as well as shows excellent stability with good nanoarray construction. Such good performance is attributed to the high intrinsic activity and superaerophobic surface property.  相似文献   

6.
Here a progressive hot deformation procedure that endows the benchmark n‐type V2VI3 thermoelectric materials with short range disorder (multiple defects), long range order (crystallinity), and strong texture (nearly orientation order) is reported. Not only it is rare for these structural features to coexist but also these structural features elicit the synergistic compositional–mechanical–thermal effects, i.e., a profound interplay among the counts, magnitude, and temperature of hot deformation in relation to the as formed point defects, dislocations, textures, strain clusters, and distortions. Using progressively larger die sets and relatively low hot deformation temperature, rich multiscale microstructures concurrently with a high level of texture comparable to that of zone melted ingot are obtained. The strong donor‐like effect significantly increases the majority carrier concentration, suppressing the detrimental bipolar effect. In addition, the multiscale microstructures yield an ultralow lattice thermal conductivity ≈0.31 W m−1 K−1 at 405 K. A record zT ≈ 1.3 at 450 K are attained in progressively hot deformed n‐type Bi1.95Sb0.05Te2.3Se0.7 through the synergistic effects. These results not only promise a better pairing between n‐type and p‐type legs in device fabrication but also bring our understanding of n‐type V2VI3 alloys and hot deformation technique to a new level.  相似文献   

7.
Se‐doped Mg3.2Sb1.5Bi0.5‐based thermoelectric materials are revisited in this study. An increased ZT value ≈ 1.4 at about 723 K is obtained in Mg3.2Sb1.5Bi0.49Se0.01 with optimized carrier concentration ≈ 1.9 × 1019 cm?3. Based on this composition, Co and Mn are incorporated for the manipulation of the carrier scattering mechanism, which are beneficial to the dramatically enhanced electrical conductivity and power factor around room temperature range. Combined with the lowered lattice thermal conductivity due to the introduction of effective phonon scattering centers in Se&Mn‐codoped sample, a highest room temperature ZT value ≈ 0.63 and a peak ZT value ≈ 1.70 at 623 K are achieved for Mg3.15Mn0.05Sb1.5Bi0.49Se0.01, leading to a high average ZT ≈ 1.33 from 323 to 673 K. In particular, a remarkable average ZT ≈ 1.18 between the temperature of 323 and 523 K is achieved, suggesting the competitive substitution for the commercialized n‐type Bi2Te3‐based thermoelectric materials.  相似文献   

8.
2D conjugated metal‐organic frameworks (2D c‐MOFs) are emerging as a novel class of conductive redox‐active materials for electrochemical energy storage. However, developing 2D c‐MOFs as flexible thin‐film electrodes have been largely limited, due to the lack of capability of solution‐processing and integration into nanodevices arising from the rigid powder samples by solvothermal synthesis. Here, the synthesis of phthalocyanine‐based 2D c‐MOF (Ni2[CuPc(NH)8]) nanosheets through ball milling mechanical exfoliation method are reported. The nanosheets feature with average lateral size of ≈160 nm and mean thickness of ≈7 nm (≈10 layers), and exhibit high crystallinity and chemical stability as well as a p‐type semiconducting behavior with mobility of ≈1.5 cm2 V?1 s?1 at room temperature. Benefiting from the ultrathin feature, the nanosheets allow high utilization of active sites and facile solution‐processability. Thus, micro‐supercapacitor (MSC) devices are fabricated mixing Ni2[CuPc(NH)8] nanosheets with exfoliated graphene, which display outstanding cycling stability and a high areal capacitance up to 18.9 mF cm?2; the performance surpasses most of the reported conducting polymers‐based and 2D materials‐based MSCs.  相似文献   

9.
We deal here with Sb and Bi doping effects of the n-type half-Heusler (HH) Ti0.3Zr0.35Hf0.35NiSn alloy on the measured thermoelectric properties. To date, the thermoelectric effects upon Bi doping on the Sn site of HH alloys have rarely been reported, while Sb has been widely used as a donor dopant. A comparison between the measured transport properties following arc melting and spark plasma sintering of both Bi- and Sb-doped samples indicates a much stronger doping effect upon Sb doping, an effect which was explained thermodynamically. Due to similar lattice thermal conductivity values obtained for the various doped samples, synthesized in a similar experimental route, no practical variations in the thermoelectric figure of merit values were observed between the various investigated samples, an effect which was attributed to compensation between the power factor and electrical thermal conductivity values regardless of the various investigated dopants and doping levels.  相似文献   

10.
A whole interfacial transition of electrons from conduction bands of n‐type material to the acceptor levels of p‐type material makes the energy band engineering successful. It tunes intrinsic ZnO UV emission to UV‐free and warm white light‐emitting diode (W‐LED) emission with color coordinates around (0.418, 0.429) at the bias of 8–15.5 V. The W‐LED is fabricated based on antimony (Sb) doped p‐ZnO nanowire arrays/Si doped n‐GaN film heterojunction structure through one‐step chemical vapor deposition with quenching process. Element analysis shows that the doping concentration of Sb is ≈1.0%. The IV test exhibits the formation of p‐type ZnO nanowires, and the temperature‐dependent photoluminescence measurement down to 4.65 K confirms the formation of deep levels and shallow acceptor levels after Sb‐doping. The intrinsic UV emission of ZnO at room temperature is cut off in electroluminescence emission at a bias of 4–15.5 V. The UV‐free and warm W‐LED have great potential application in green lights program, especially in eye‐protected lamp and display since television, computer, smart phone, and mobile digital equipment are widely and heavily used in modern human life, as more than 3000 h per year.  相似文献   

11.
Sb‐doped and GeTe‐alloyed n‐type thermoelectric materials that show an excellent figure of merit ZT in the intermediate temperature range (400–800 K) are reported. The synergistic effect of favorable changes to the band structure resulting in high Seebeck coefficient and enhanced phonon scattering by point defects and nanoscale precipitates resulting in reduction of thermal conductivity are demonstrated. The samples can be tuned as single‐phase solid solution (SS) or two‐phase system with nanoscale precipitates (Nano) based on the annealing processes. The GeTe alloying results in band structure modification by widening the bandgap and increasing the density‐of‐states effective mass of PbTe, resulting in significantly enhanced Seebeck coefficients. The nanoscale precipitates can improve the power factor in the low temperature range and further reduce the lattice thermal conductivity (κlat). Specifically, the Seebeck coefficient of Pb0.988Sb0.012Te–13%GeTe–Nano approaches ?280 µV K?1 at 673 K with a low κlat of 0.56 W m?1 K?1 at 573 K. Consequently, a peak ZT value of 1.38 is achieved at 623 K. Moreover, a high average ZTavg value of ≈1.04 is obtained in the temperature range from 300 to 773 K for n‐type Pb0.988Sb0.012Te–13%GeTe–Nano.  相似文献   

12.
Bi85Sb15?x Pb x (x = 0, 0.5, 1, 2, 3) alloys have been prepared by the mechanical alloying–spark plasma sintering (MA-SPS) method. X-ray diffraction and scanning electron microscopy were used to characterize the microstructure of the alloys. The effect of Pb content on the thermoelectric properties was investigated in the temperature range 77–300 K. The results showed that the electrical transport properties of the Bi–Sb alloys changed from n-type to p-type with substitution of Sb by Pb. The maximum power factor reached 1.6 × 10?3 W/mK2 at 190 K, a significant improvement on values reported elsewhere. This study demonstrated that high-performance p-type thermoelectric Bi–Sb materials can be obtained by spark plasma sintering.  相似文献   

13.
Cesium azide (CsN3) is employed as a novel n‐dopant because of its air stability and low deposition temperature. CsN3 is easily co‐deposited with the electron transporting materials in an organic molecular beam deposition chamber so that it works well as an n‐dopant in the electron transport layer because its evaporation temperature is similar to that of common organic materials. The driving voltage of the p‐i‐n device with the CsN3‐doped n‐type layer and a MoO3‐doped p‐type layer is greatly reduced, and this device exhibits a very high power efficiency (57 lm W?1). Additionally, an n‐doping mechanism study reveals that CsN3 was decomposed into Cs and N2 during the evaporation. The charge injection mechanism was investigated using transient electroluminescence and capacitance–voltage measurements. A very highly efficient tandem organic light‐emitting diodes (OLED; 84 cd A?1) is also created using an n–p junction that is composed of the CsN3‐doped n‐type organic layer/MoO3 p‐type inorganic layer as the interconnecting unit. This work demonstrates that an air‐stable and low‐temperature‐evaporable inorganic n‐dopant can very effectively enhance the device performance in p‐i‐n and tandem OLEDs, as well as simplify the material handling for the vacuum deposition process.  相似文献   

14.
Highly flexible supercapacitors (SCs) have great potential in modern electronics such as wearable and portable devices. However, ultralow specific capacity and low operating potential window limit their practical applications. Herein, a new strategy for the fabrication of free‐standing Ni?Mo?S and Ni?Fe?S nanosheets (NSs) for high‐performance flexible asymmetric SC (ASC) through hydrothermal and subsequent sulfurization technique is reported. The effect of Ni2+ is optimized to attain hierarchical Ni?Mo?S and Ni?Fe?S NS architectures with high electrical conductivity, large surface area, and exclusive porous networks. Electrochemical properties of Ni?Mo?S and Ni?Fe?S NS electrodes exhibit that both have ultrahigh specific capacities (≈312 and 246 mAh g?1 at 1 mA cm?2), exceptional rate capabilities (78.85% and 78.46% capacity retention even at 50 mA cm?2, respectively), and superior cycling stabilities. Most importantly, a flexible Ni?Mo?S NS//Ni?Fe?S NS ASC delivers a high volumetric capacity of ≈1.9 mAh cm?3, excellent energy density of ≈82.13 Wh kg?1 at 0.561 kW kg?1, exceptional power density (≈13.103 kW kg?1 at 61.51 Wh kg?1) and an outstanding cycling stability, retaining ≈95.86% of initial capacity after 10 000 cycles. This study emphasizes the potential importance of compositional tunability of the NS architecture as a novel strategy for enhancing the charge storage properties of active electrodes.  相似文献   

15.
Molecular doping of organic semiconductors and devices represents an enabling technology for a range of emerging optoelectronic applications. Although p‐type doping has been demonstrated in a number of organic semiconductors, efficient n‐type doping has proven to be particularly challenging. Here, n‐type doping of solution‐processed C60, C70, [60]PCBM, [70]PCBM and indene‐C60 bis‐adduct by 1H‐benzimidazole (N‐DMBI) is reported. The doping efficiency for each system is assessed using field‐effect measurements performed under inert atmosphere at room temperature in combination with optical absorption spectroscopy and atomic force microscopy. The highest doping efficiency is observed for C60 and C70 and electron mobilities up to ≈2 cm2/Vs are obtained. Unlike in substituted fullerenes‐based transistors where the electron mobility is found to be inversely proportional to N‐DMBI concentration, C60 and C70 devices exhibit a characteristic mobility increase by approximately an order of magnitude with increasing dopant concentration up to 1 mol%. Doping also appears to significantly affect the bias stability of the transistors. The work contributes towards understanding of the molecular doping mechanism in fullerene‐based semiconductors and outlines a simple and highly efficient approach that enables significant improvement in device performance through facile chemical doping.  相似文献   

16.
Due to its single conduction band nature, it is highly challenging to enhance the power factor of SnSe2 by band convergence. Here, it is reported that simultaneous Cu intercalation and Br doping induce strong Cu–Br interaction to connect SnSe2 layers, otherwise isolated, via “electrical bridges.” Atom probe tomography analysis confirms a strong attraction between Cu intercalants and Br dopants in the SnSe2 lattice. Density functional theory calculations reveal that this interaction delocalizes electrons confined around Sn? Se covalent bonds and enhances charge transfer across the SnSe2 slabs. These effects dramatically increase electron mobility and concentration. Polycrystalline SnCu0.005Se1.98Br0.02 shows even higher electron mobility than pristine SnSe2 single crystal and the theoretical expectation. This results in significantly improved electrical conductivity without reducing effective mass and Seebeck coefficient, thereby leading to the highest power factor of ≈12 µW cm?1 K?2 to date for polycrystalline SnSe2 and SnSe. It even surpasses the value for the state‐of‐the‐art n‐type SnSe0.985Br0.015 single crystal at elevated temperatures. Surprisingly, the achieved power factor is nearly independent of temperature ranging from 300 to 773 K. The engineering thermoelectric figure of merit ZTeng for SnCu0.005Se1.98Br0.02 is ≈0.25 between 773 and 300 K, the highest ZTeng ever reported for any form of SnSe2‐based thermoelectric materials.  相似文献   

17.
Skutterudite‐type pnictides based on CoSb3 are promising semiconductor materials for thermoelectric applications. An exhaustive structural characterization by synchrotron X‐ray powder diffraction of different M‐filled CoSb3 (M = Y, K, Sr, La, Ce, Yb) skutterudites, with a panoply of M atoms with very different chemical nature, allows to better understand the effects of filling from a crystallo‐chemical point of view. These analyses focus on the correlation of chemical and structural features with the enhanced thermoelectric properties displayed by certain families of filled‐CoSb3 skutterudites. These are mainly determined by Sb positional parameters, yielding Oftedal plots that depend on the filling fraction, ionic state, and atomic radius of the filler. Together with the distortion of [Sb4] rings and [CoSb6] octahedra present in the skutterudite structure, these results are linked to the band‐convergence concept and its influence on the thermoelectric transport properties. Here, the structural changes observed in the different chemical compositions are relevant to understand the improved thermoelectric performance of single partially filled n‐type skutterudites.  相似文献   

18.
High performance n‐type bulk BiAgSeS is successfully synthesized to construct heterogeneous composites which consist of mesoscale grains of both pristine BiAgSeS and doped BiAgSeS1‐xClx ( x = 0.03 or 0.05). Without perceptibly deteriorating the Seebeck coefficient, a significant enhancement on electrical conductivity is obtained due to an anomalous increase of both carrier mobility and concentration; the enhanced carrier mobility is proven to be a direct result of modulation doping which relates to the band alignments, while the increased carrier concentration is attributed to the possible charge transfer from Cl rich nanoscale precipitates at the heterogeneous BiAgSeS/BiAgSeS1‐xClx grain boundaries. Eventually, an enhanced figure of merit ZT ≈ 1.23 at 773 K in the composite (BiAgSeS)0.5(BiAgSeS0.97Cl0.03)0.5 is achieved, indicating that heterogeneous composites ultilizing the mechanism of modulation doping shall be a promising means of boosting the performance of thermoelectric materials. This strategy should be very likely applicable to other thermoelectrics.  相似文献   

19.
Rational design of effective catalysts with both high activity and selectivity is highly significant and desirable for hydrogenation reaction. In this paper, for the first time an efficient approach to controllably construct 1D metal nanowires (NWs) coated with hydroxide (NixM(OH)2 (M = Mn, Fe, Co, Cu, and Al)) membranes as highly active and selective hydrogenation catalysts is reported. The optimized Ni32Cu(OH)2 membrane coated Pt3Ni nanowires show much enhanced selectivity of 87.9% for the hydrogenation of cinnamaldehyde to hydrocinnamaldehyde instead of hydrocinnamyl alcohol, in contrast with the pristine Pt3Ni nanowires and Pt3Ni nanowires on Ni(OH)2 membranes. The enhanced selectivity of Pt3Ni@Ni32Cu(OH)2‐2 NWs is ascribed to confinement/poisoning effects of the coated Ni32Cu(OH)2 membranes as well as the intimate interaction between the Pt3Ni NWs and Ni32Cu(OH)2 membranes, as confirmed by X‐ray photoelectron spectroscopy. The coated structures also show good stability after five recycle runs. The present work highlights the importance of surface engineering for the design of multicomponent composites with desirable activity and selectivity toward hydrogenation reaction and beyond.  相似文献   

20.
Temperature dependences of the electrical conductivity, Hall coefficient, and thermoelectric power of Zn-doped alloys of the equimolar composition In0.5Ga0.5Sb are studied. The concentration and temperature dependences of the effective mass of holes are determined. It is shown that, for all doped samples at T < 200 K, the charge carriers are scattered by impurity ions and, at T > 200 K, scattering by lattice vibrations also introduces a substantial contribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号