首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Lung cancer is associated with very poor prognosis and considered one of the leading causes of death worldwide. Here, highly potent and selective biohybrid RNA interference (RNAi)‐peptide nanoparticles (NPs) are presented that can induce specific and long‐lasting gene therapy in inflammatory tumor associated macrophages (TAMs), via an immune modulation of the tumor milieu combined with tumor suppressor effects. The data here prove that passive gene silencing can be achieved in cancer cells using regular RNAi NPs. When combined with M2 peptide–based targeted immunotherapy that immuno‐modulates TAMs cell population, a synergistic effect and long‐lived tumor eradication can be observed along with increased mice survival. Treatment with low doses of siRNA (ED50 0.0025–0.01 mg kg?1) in a multi and long‐term dosing system substantially reduces the recruitment of inflammatory TAMs in lung tumor tissue, reduces tumor size (≈95%), and increases animal survival (≈75%) in mice. The results here suggest that it is likely that the combination of silencing important genes in tumor cells and in their supporting immune cells in the tumor microenvironment, such as TAMs, will greatly improve cancer clinical outcomes.  相似文献   

3.
4.
Bacteria are utilized as adjuvants for anticancer immunotherapy. However, immunotherapy with bacteria or their extracts is limited due to their toxicity. On the basis of the innate molecular interactions of foreign molecules from the bacterial components with the host pattern recognition receptors (PRRs), a synthetic adjuvant vector morphologically mimicking the bacterium is engineered, which comprises an optimal combination of components derived from bacterial cell wall, flagellum, and nucleoid. The bacterium‐mimicking vectors (BMVs) cooperatively trigger multiple signaling pathways of PRRs and display superior antitumor therapeutic and prophylactic effects to either that of the reported synthetic or bacterium‐derived adjuvant. Significantly, BMVs improve the efficacy of photothermal ablation therapy to eradicate 50% of large established tumor in mice that completely reject tumor rechallenge. The synthetic BMVs with the detoxified and controllable composition exhibit minimized toxicity. Such a bacterium‐mimicking engineering strategy provides a rational approach to select pathogen‐associated molecular patterns, which drives the desired antitumor immune response. The engineered BMVs offer a promising alternative to the bacterial adjuvant for cancer immunotherapy.  相似文献   

5.
Copper chalcogenides have been demonstrated to be a promising photothermal agent due to their high photothermal conversion efficiency, synthetic simplicity, and low cost. However, the hydrophobic and less biocompatible characteristics associated with their synthetic processes hamper widely biological applications. An alternative strategy for improving hydrophilicity and biocompatibility is to coat the copper chalcogenide nanomaterials with silica shell. Herein, the rational preparation design results in successful coating mesoporous silica (mSiO2) on as‐synthesized Cu9S5 nanocrystals, forming Cu9S5@mSiO2‐PEG core‐shell nanostructures. As‐prepared Cu9S5@mSiO2‐PEG core‐shell nanostructures show low cytotoxicity and excellent blood compatibility, and are effectively employed for photothermal ablation of cancer cells and infrared thermal imaging. Moreover, anticancer drug of doxorubicin (DOX)‐loaded Cu9S5@mSiO2‐PEG core‐shell nanostructures show pH sensitive release profile and are therefore beneficial to delivery of DOX into cancer cells for chemotherapy. Importantly, the combination of photothermal‐ and chemotherapies demonstrates better effects of therapy on cancer treatment than individual therapy approaches in vitro and in vivo.  相似文献   

6.
Red blood cells (RBCs), the “innate carriers” in blood vessels, are gifted with many unique advantages in drug transportation over synthetic drug delivery systems (DDSs). Herein, a tumor angiogenesis targeting, light stimulus‐responsive, RBC‐based DDS is developed by incorporating various functional components within the RBC platform. An albumin bound near‐infrared (NIR) dye, together with a chemotherapy drug doxorubicin, is encapsulated inside RBCs, the surfaces of which are modified with a targeting peptide to allow cancer targeting. Under stimulation by an external NIR laser, the membrane of the RBCs would be destroyed by the light‐induced photothermal heating, resulting in effective drug release. As a proof of principle, RBC‐based cancer cell targeted drug delivery and light‐controlled drug release is demonstrated in vitro, achieving a marked synergistic therapeutic effect through the combined photothermal–chemotherapy. This work presents a novel design of smart RBC carriers, which are inherently biocompatible, promising for targeted combination therapy of cancer.  相似文献   

7.
Telluride molybdenum (MoTe2) nanosheets with wide near‐infrared (NIR) absorbance are functionalized with polyethylene glycol‐cyclic arginine‐glycine‐aspartic acid tripeptide (PEG‐cRGD). After loading a chemotherapeutic drug (doxorubicin, DOX), MoTe2‐PEG‐cRGD/DOX is used for combined photothermal therapy and chemotherapy. With the high photothermal conversion efficiency, MoTe2‐PEG‐cRGD/DOX exhibits favorable cells killing ability under NIR irradiation. Owing to the cRGD‐mediated specific tumor targeting, MoTe2‐PEG‐cRGD/DOX shows efficient accumulation in tumors to induce a strong tumor ablation effect. MoTe2‐PEG‐cRGD nanosheets, which are relatively stable in the circulation, could be degraded under NIR ray. The in vitro and in vivo experimental results demonstrate that this theranostic nanoagent, which could accumulate in tumors to allow photothermal imaging and combined therapy, is readily degradable in normal organs to enable rapid excretion and avoid long‐term retention/toxicity, holding great potential to treat tumor effectively.  相似文献   

8.
Here, described are additional treatment strategies that make use of human mesenchymal stem cell (hMSC)‐based local immunotherapeutic agents for the treatment of solid tumors. Dibenzocyclooctyne‐poly(ethylene glycol)‐pheophorbide A conjugates are engineered for cell surface conjugation by copper‐free click chemistry and are subsequently conjugated to hMSC (hMSC‐DPP). hMSC‐DPP can recognize and migrate toward cancer lesions, where they secrete pro‐inflammatory cytokines such as interleukin (IL)‐6, IL‐8, and heat shock protein 70 in pursuance of photodynamic therapy‐mediated cell death. The secreted immune factors trigger interferon gamma, IL‐2, IL‐4, IL‐12, and granulocyte‐macrophage colony‐stimulating factor, resulting in the local accumulation of T cells, B cells, natural killer cells, and antigen presenting cells at the tumor site. Treatment with hMSC‐DPP induces the accumulation of cytokines at the cancer site and minimizes systemic immune‐based side effects. This strategy is expected to increase the vulnerability of cancer cells to immune cells and cytokines, thus aiding in the development of a robust treatment platform for cancer immunotherapy.  相似文献   

9.
10.
A theranostic platform combining synergistic therapy and real‐time imaging attracts enormous attention but still faces great challenges, such as tedious modifications and lack of efficient accumulation in tumor. Here, a novel type of theranostic agent, bismuth sulfide@mesoporous silica (Bi2S3@mPS) core‐shell nanoparticles (NPs), for targeted image‐guided therapy of human epidermal growth factor receptor‐2 (HER‐2) positive breast cancer is developed. To generate such NPs, polyvinylpyrrolidone decorated rod‐like Bi2S3 NPs are chemically encapsulated with a mesoporous silica (mPS) layer and loaded with an anticancer drug, doxorubicin. The resultant NPs are then chemically conjugated with trastuzumab (Tam, a monoclonal antibody targeting HER‐2 overexpressed breast cancer cells) to form Tam‐Bi2S3@mPS NPs. By in vitro and in vivo studies, it is demonstrated that the Tam‐Bi2S3@mPS bear multiple desired features for cancer theranostics, including good biocompatibility and drug loading ability as well as precise and active tumor targeting and accumulation (with a bismuth content in tumor being ≈16 times that of nontargeted group). They can simultaneously serve both as an excellent contrast enhancement probe (due to the presence of strong X‐ray‐attenuating bismuth element) for computed tomography deep tissue tumor imaging and as a therapeutic agent to destruct tumors and prevent metastasis by synergistic photothermal‐chemo therapy.  相似文献   

11.
The condensed tumor extracellular matrix (ECM) consisting of cross‐linked hyaluronic acid (HA) is one of key factors that results in the aberrant tumor microenvironment (TME) and the resistance to various types of therapies. Herein, hyaluronidase (HAase) is modified by a biocompatible polymer, dextran (DEX), via a pH‐responsive traceless linker. The formulated DEX‐HAase nanoparticles show enhanced enzyme stability, reduced immunogenicity, and prolonged blood half‐life after intravenous injection. With efficient tumor passive accumulation, DEX‐HAase within the acidic TME would be dissociated to release native HAase, which afterward triggers the breakdown of HA to loosen the ECM structure, subsequently leading to enhanced penetration of oxygen and other therapeutic agents. The largely relieved tumor hypoxia would promote the therapeutic effect of nanoparticle‐based photodynamic therapy (PDT), accompanied by the reverse of the immunosuppressive TME to boost cancer immunotherapy. Interestingly, the therapeutic responses achieved by the combination of PDT and anti‐programmed death‐ligand 1 (anti‐PD‐L1) checkpoint blockade therapy could be significantly enhanced by pretreatment with DEX‐HAase. In addition to destructing tumors with direct light exposure, a robust abscopal effect is achieved after such treatment, which is promising for tumor metastasis inhibition. The work presents a new type of adjuvant nanomedicine to assist photodynamic‐immunotherapy of cancer, by effective modulation of TME.  相似文献   

12.
Optimal nanosized drug delivery systems (NDDS) require long blood circulation and controlled drug release at target lesions for efficient anticancer therapy. Red blood cell (RBC) membrane‐camouflaged nanoparticles (NPs) can integrate flexibility of synergetic materials and highly functionality of RBC membrane, endowed with many unique advantages for drug delivery. Here, new near‐infrared (NIR)‐responsive RBC membrane‐mimetic NPs with NIR‐activated cellular uptake and controlled drug release for treating metastatic breast cancer are reported. An NIR dye is inserted in RBC membrane shells, and the thermoresponsive lipid is employed to the paclitaxel (PTX)‐loaded polymeric cores to fabricate the RBC‐inspired NPs. The fluorescence of dye in the NPs can be used for in vivo tumor imaging with an elongated circulating halftime that is 12.3‐folder higher than that of the free dye. Under the NIR laser stimuli, the tumor cellular uptake of NPs is significantly enhanced to 2.1‐fold higher than that without irradiation. The structure of the RBC‐mimetic NPs can be destroyed by the light‐induced hyperthermia, triggered rapid PTX release (45% in 30 min). These RBC‐mimetic NPs provide a synergetic chemophotothermal therapy, completely inhibited the growth of the primary tumor, and suppress over 98% of lung metastasis in vivo, suggesting it to be an ideal NDDS to fight against metastatic breast cancer.  相似文献   

13.
Cancer therapeutic drugs face various transportation barriers in transit to the tumor site, making the delivery of effective drug concentrations problematic. Moreover, these drugs are very difficult to use due to their adverse off‐target effects. Thus, it is very essential to develop a drug delivery system that can deliver drugs to achieve effective local concentrations without side effects on healthy tissues. Herein, the authors report a self‐assembled nanodrug system in which hydrophobic antitumor drugs are packaged into nanoparticles to improve water solubility, tumor targeting ability, blood retention time, and chemotherapeutic effect. The nanodrugs are degraded into smaller ones when exposed to the tumor microenvironment, extravasated from leaky regions of the tumor vasculature, and displayed matrix metalloproteinase‐2 (MMP‐2)‐induced degradation and antitumor property. To construct this unique system, an amphiphilic multifunctional molecule (Pep‐Cy5) is synthesized by attaching a MMP‐2‐cleavable peptide to a hydrophobic near‐infrared dye, Cy5. Two hydrophobic anticancer drugs are conjugated to Pep‐Cy5 through hydrophobic interactions to form the self‐assembled nanodrug system. The MMP‐2‐induced degradation and hydrophobic antitumor drug interchangeability features of this nanosystem enable the hydrophobic antitumor drugs to exhibit longer blood‐retention times, improved intratumoral accumulation, fewer side effects, and higher anticancer efficacies compared with free drugs.  相似文献   

14.
Multifunctional theranostic agents have become rather attractive to realize image‐guided combination cancer therapy. Herein, a novel method is developed to synthesize Bi2Se3 nanosheets decorated with mono‐dispersed FeSe2 nanoparticles (FeSe2/Bi2Se3) for tetra‐modal image‐guided combined photothermal and radiation tumor therapy. Interestingly, upon addition of Bi(NO3)3, pre‐made FeSe2 nanoparticles via cation exchange would be gradually converted into Bi2Se3 nanosheets, on which remaining FeSe2 nanoparticles are decorated. The yielded FeSe2/Bi2Se3 composite‐nanostructures are then modified with polyethylene glycol (PEG). Taking advantages of the high r 2 relaxivity of FeSe2, the X‐ray attenuation ability of Bi2Se3, the strong near‐infrared optical absorbance of the whole nanostructure, as well as the chelate‐free radiolabeling of 64Cu on FeSe2/Bi2Se3‐PEG, in vivo magnetic resonance/computer tomography/photoacoustic/position emission tomography multimodal imaging is carried out, revealing efficient tumor homing of FeSe2/Bi2Se3‐PEG after intravenous injection. Utilizing the intrinsic physical properties of FeSe2/Bi2Se3‐PEG, in vivo photothermal and radiation therapy to achieve synergistic tumor destruction is then realized, without causing obvious toxicity to the treated animals. This work presents a unique method to synthesize composite‐nanostructures with highly integrated functionalities, promising not only for nano‐biomedicine but also potentially for other different nanotechnology fields.  相似文献   

15.
A core–satellite nanotheranostic agent with pH‐dependent photothermal properties, pH‐triggered drug release, and H2O2‐induced catalytic generation of radical medicine is fabricated to give a selective and effective tumor medicine with three modes of action. The nanocomplex (core–satellite mesoporous silica–gold nanocomposite) consists of amino‐group‐functionalized mesoporous silica nanoparticles (MSN‐NH2) linked to L‐cysteine‐derivatized gold nanoparticles (AuNPs‐Cys) with bridging ferrous iron (Fe2+) ions. The AuNPs‐Cys serve as both removable caps that control drug release (doxorubicin) and stimuli‐responsive agents for selective photothermal therapy. Drug release and photothermal therapy are initiated by the cleavage of Fe2+ coordination bonds at low pH and the spontaneous aggregation of the dissociated AuNPs‐Cys. In addition, the Fe2+ is able to catalyze the decomposition of hydrogen peroxide abundant in cancer cells by a Fenton‐like reaction to generate high‐concentration hydroxyl radicals (·OH), which then causes cell damage. This system requires two tumor microenvironment conditions (low pH and considerable amounts of H2O2) to trigger the three therapeutic actions. In vivo data from mouse models show that a tumor can be completely inhibited after two weeks of treatment with the combined chemo‐photothermal method; the data directly demonstrate the efficiency of the MSN–Fe–AuNPs for tumor therapy.  相似文献   

16.
17.
Gene therapy has great potential to bring tremendous improvement to cancer therapy. Recently, photochemical internalization (PCI) has provided the opportunity to overcome endo‐lysosomal sequestration, which is one of the main bottlenecks in both gene and chemotherapeutic delivery. Despite PCI having shown great potential in gene delivery systems, it still remains difficult to perform due to the photo‐oxidation of exogenous cargo genes by reactive oxygen species (ROS) generated from activated photosensitizers (PSs). In this paper, a new type of a stable light‐triggered gene delivery system is demonstrated based on endo‐lysosomal pH‐responsive polymeric PSs, which serve as shielding material for the polymer/gene complex. By taking advantage of the endo‐lysosomal pH‐sensitive de‐shielding ability of the pH‐responsive shielding material incorporated in the ternary gene complexes (pH‐TCs), a more significant photo‐triggered gene expression effect is achieved without damage to the gene from ROS. In contrast, pH‐insensitive material‐shielded nanocarriers cause photo‐oxidation of the payload and do not generate a notable transfection efficacy. Importantly, with the benefit of our newly developed gene delivery system, the deep penetration issue can be resolved. Finally, the light‐triggered gene delivery system using pH‐TCs is applied to deliver the therapeutic p53 gene in melanoma K‐1735 bearing mice, showing excellent therapeutic potential for cancer.  相似文献   

18.
2D materials, represented by transition metal dichalcogenides (TMDs), have attracted tremendous research interests in photoelectronic and electronic devices. However, for their relatively small bandgap (<2 eV), the application of traditional TMDs into solar‐blind ultraviolet (UV) photodetection is restricted. Here, for the first time, NiPS3 nanosheets are grown via chemical vapor deposition method. The nanosheets thinning to 3.2 nm with the lateral size of dozens of micrometers are acquired. Based on the various nanosheets, a linearity is found between the Raman intensity of specific Ag modes and the thickness, providing a convenient method to determine their layer numbers. Furthermore, a UV photodetector is fabricated using few‐layered 2D NiPS3 nanosheets. It shows an ultrafast rise time shorter than 5 ms with an ultralow dark current less than 10 fA. Notably, this UV photodetector demonstrates a high detectivity of 1.22 × 1012 Jones, outperforming some traditional wide‐bandgap UV detectors. The wavelength‐dependent photoresponsivity measurement allows the direct observation of an admirable cut‐off wavelength at 360 nm, which indicates a superior spectral selectivity. The promising photodetector performance, accompanied with the controllable fabrication and transfer process of nanosheet, lays the foundation of applying 2D semiconductors for ultrafast UV light detection.  相似文献   

19.
Although nanomaterial‐mediated phototherapy, in particular photothermal therapy (PTT) and photodynamic therapy (PDT), is extensively investigated in recent years, the ablation mechanism, evolution, and rehabilitation process of in vivo solid tumor after phototherapy are rarely explored yet and remain a terra incognita. Herein, a kind of bismuth ferrite nanoparticles (abbreviated as BFO NPs) are strategically designed and synthesized with a desirable size and bioactivity as a brand‐new phototherapeutic agent for the phototherapy, which are of strong near infrared (NIR) absorbance, excellent biocompatibility, and outstanding photophysical activity for the hyperthemia and reactive oxygen species generation. Resultantly, BFO NPs can realize simultaneous PTT/PDT synergistic therapy outcome against cancer cells and solid tumor under NIR laser irradiation. Meanwhile, for the first time, more attentions are paid to demonstrate ablation mechanism and evolution process of in vivo solid tumor after phototherapy by B‐mode ultrasonography/magnetic resonance imaging as well as histopathological analysis, all of which verify a series of physiological processes, being in order of necrosis of parenchymal cells, in situ tissue disintegration, liquefaction, and finally encapsulation process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号