首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly efficient planar heterojunction perovskite solar cells (PVSCs) with dopamine (DA) semiquinone radical modified poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (DA‐PEDOT:PSS) as a hole transporting layer (HTL) were fabricated. A combination of characterization techniques were employed to investigate the effects of DA doping on the electron donating capability of DA‐PEDOT:PSS, perovskite film quality and charge recombination kinetics in the solar cells. Our study shows that DA doping endows the DA‐PEDOT:PSS‐modified PVSCs with a higher radical content and greater perovskite to HTL charge extraction capability. In addition, the DA doping also improves work function of the HTL, increases perovskite film crystallinity, and the amino and hydroxyl groups in DA can interact with the undercoordinated Pb atoms on the perovskite crystal, reducing charge‐recombination rate and increasing charge‐extraction efficiency. Therefore, the DA‐PEDOT:PSS‐modified solar cells outperform those based on PEDOT:PSS, increasing open‐circuit voltage (V oc) and power conversion efficiency (PCE) to 1.08 V and 18.5%, respectively. Even more importantly, the efficiency of the unencapsulated DA‐PEDOT:PSS‐based PVSCs are well retained with only 20% PCE loss after exposure to air for 250 hours. These in‐depth insights into structure and performance provide clear and novel guidelines for the design of effective HTLs to facilitate the practical application of inverted planar heterojunction PVSCs.  相似文献   

2.
The π‐conjugated organic small molecule 4,4′‐cyclohexylidenebis[N,N‐bis(4‐methylphenyl) benzenamine] (TAPC) has been explored as an efficient hole transport material to replace poly(3,4‐ethylenedio‐xythiophene):poly(styrenesulfonate) (PEDOT:PSS) in the preparation of p‐i‐n type CH3NH3PbI3 perovskite solar cells. Smooth, uniform, and hydrophobic TAPC hole transport layers can be facilely deposited through solution casting without the need for any dopants. The power conversion efficiency of perovskite solar cells shows very weak TAPC layer thickness dependence across the range from 5 to 90 nm. Thermal annealing enables improved hole conductivity and efficient charge transport through an increase in TAPC crystallinity. The perovskite photoactive layer cast onto thermally annealed TAPC displays large grains and low residual PbI2, leading to a high charge recombination resistance. After optimization, a stabilized power conversion efficiency of 18.80% is achieved with marginal hysteresis, much higher than the value of 12.90% achieved using PEDOT:PSS. The TAPC‐based devices also demonstrate superior stability compared with the PEDOT:PSS‐based devices when stored in ambient circumstances, with a relatively high humidity ranging from 50 to 85%.  相似文献   

3.
Interface engineering is critical to the development of highly efficient perovskite solar cells. Here, urea treatment of hole transport layer (e.g., poly(3,4‐ethylene dioxythiophene):polystyrene sulfonate (PEDOT:PSS)) is reported to effectively tune its morphology, conductivity, and work function for improving the efficiency and stability of inverted MAPbI3 perovskite solar cells (PSCs). This treatment has significantly increased MAPbI3 photovoltaic performance to 18.8% for the urea treated PEDOT:PSS PSCs from 14.4% for pristine PEDOT:PSS devices. The use of urea controls phase separation between PEDOT and PSS segments, leading to the formation of a unique fiber‐shaped PEDOT:PSS film morphology with well‐organized charge transport pathways for improved conductivity from 0.2 S cm?1 for pristine PEDOT:PSS to 12.75 S cm?1 for 5 wt% urea treated PEDOT:PSS. The urea‐treatment also addresses a general challenge associated with the acidic nature of PEDOT:PSS, leading to a much improved ambient stability of PSCs. In addition, the device hysteresis is significantly minimized by optimizing the urea content in the treatment.  相似文献   

4.
The power‐conversion efficiency (PCE) of single‐junction organic solar cells (OSCs) has exceeded 16% thanks to the development of non‐fullerene acceptor materials and morphological optimization of active layer. In addition, interfacial engineering always plays a crucial role in further improving the performance of OSCs based on a well‐established active‐layer system. Doping of graphitic carbon nitride (g‐C3N4) into poly(3,4‐ethylene‐dioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as a hole transport layer (HTL) for PM6:Y6‐based OSCs is reported, boosting the PCE to almost 16.4%. After being added into the PEDOT:PSS, the g‐C3N4 as a Bronsted base can be protonated, weakening the shield effect of insulating PSS on conductive PEDOT, which enables exposures of more PEDOT chains on the surface of PEDOT:PSS core‐shell structure, and thus increasing the conductivity. Therefore, at the interface between g‐C3N4 doped HTL and PM6:Y6 layer, the charge transport is improved and the charge recombination is suppressed, leading to the increases of fill factor and short‐circuit current density of devices. This work demonstrates that doping g‐C3N4 into PEDOT:PSS is an efficient strategy to increase the conductivity of HTL, resulting in higher OSC performance.  相似文献   

5.
For realizing flexible perovskite solar cells (PSCs), it is important to develop low‐temperature processable interlayer materials with excellent charge transporting properties. Herein, a novel polymeric hole‐transport material based on 1,4‐bis(4‐sulfonatobutoxy)benzene and thiophene moieties (PhNa‐1T) and its application as a hole‐transport layer (HTL) material of high‐performance inverted‐type flexible PSCs are introduced. Compared with the conventionally used poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), the incorporation of PhNa‐1T into HTL of the PSC device is demonstrated to be more effective for improving charge extraction from the perovskite absorber to the HTL and suppressing charge recombination in the bulk perovskite and HTL/perovskite interface. As a result, the flexible PSC using PhNa‐1T achieves high photovoltaic performances with an impressive power conversion efficiency of 14.7%. This is, to the best of our knowledge, among the highest performances reported to date for inverted‐type flexible PSCs. Moreover, the PhNa‐1T‐based flexible PSC shows much improved stability under an ambient condition than PEDOT:PSS‐based PSC. It is believed that PhNa‐1T is a promising candidate as an HTL material for high‐performance flexible PSCs.  相似文献   

6.
Hybrid organic–inorganic halide perovskites have emerged at the forefront of solution‐processable photovoltaic devices. Being the perovskite precursor mixture a complex equilibrium of species, it is very difficult to predict/control their interactions with different substrates, thus the final film properties and device performances. Here the wettability of CH3NH3PbI3 (MAPbI3) onto poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transporting layer is improved by exploiting the cooperative effect of graphene oxide (GO) and glucose inclusion. The glucose, in addition, triggers the reduction of GO, enhancing the conductivity of the PEDOT:PSS+GO+glucose based nanocomposite. The relevance of this approach toward photovoltaic applications is demonstrated by fabricating a hysteresis‐free MAPbI3 solar cells displaying a ≈37% improvement in power conversion efficiency if compared to a device grown onto pristine PEDOT:PSS. Most importantly, VOC reaches values over 1.05 V that are among the highest ever reported for PEDOT:PSS p‐i‐n device architecture, suggesting minimal recombination losses, high hole‐selectivity, and reduced trap density at the PEDOT:PSS along with optimized MAPbI3 coverage.  相似文献   

7.
Here, a facial and scalable method for efficient exfoliation of bulk transition metal dichalcogenides (TMD) and graphite in aqueous solution with poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) to prepare single‐ and few‐layer nanosheets is demonstrated. Importantly, these TMD nanosheets retain the single crystalline characteristic, which is essential for application in organic solar cells (OSCs). The hybrid PEDOT:PSS/WS2 ink prepared by a simple centrifugation is directly integrated as a hole extraction layer for high‐performance OSCs. Compared with PEDOT:PSS, the PEDOT:PSS/WS2‐based devices provide a remarkable power conversion efficiency due to the “island” morphology and benzoid–quinoid transition. This study not only demonstrates a novel method for preparing single‐ and few‐layer TMD and graphene nanosheets but also paves a way for their applications without further complicated processing.  相似文献   

8.
Hybrid solar cells made of a p‐type conducting polymer, poly(3,4‐ethyl thiophene):polystyrenesulfonate (PEDOT:PSS), on Si have gained considerable interest in the fabrication of cost‐effective high‐efficiency devices. However, most of the high power conversion efficiency (PCE) performances have been obtained from solar cells fabricated on surface‐structured Si substrates. High‐performance planar single‐junction solar cells have considerable advantages in terms of processing and cost, because they do not require the complex surface texturing processes. The interface of single‐junction solar cells can critically influence the performance. Here, we demonstrate the effect of adding different surfactants in a co‐solvent‐optimized PEDOT:PSS polymer, which, in addition to acting as a p‐layer and as an anti‐reflective coating, also enhances the device performance of a hybrid planar‐Si solar cell. Using time‐of‐flight secondary ion mass spectrometry, we conduct three‐dimensional chemical imaging of the interface, which enables us to characterize the micropore defects found to limit the PCE. Upon minimizing these micropore defects with the addition of optimized amounts of fluorosurfactant and co‐solvent, we achieve a PEDOT:PSS/planar‐Si cell with a record high PCE of 13.3% for the first time. Our present approach of micropore defect reduction can also be used to improve the performance of other organic electronic devices based on PEDOT:PSS.  相似文献   

9.
To achieve the broad utilization of the full functionality of graphene (GR) in devices, a transfer method should be developed that can simplify the process without leaving residue of the insulating supporting layer on the surface of GR. Furthermore, stable GR doping without the use of an insulating polymer is required. Here, a new GR transfer method that uses a popular conducting polymer, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), is reported as a new supporting layer for the transfer of GR films that are synthesized by chemical vapor deposition. The GR/PEDOT:PSS bilayer can be directly utilized without the removal process. Therefore, this transfer method simplifies the transfer process and solves the residue problem of conventional transfer methods. The stable doping of GR films is simultaneously achieved by using the PEDOT:PSS layer. The new GR/PEDOT:PSS hybrid electrodes are fully functional in polymer solar cells and polymer light‐emitting diodes, outperforming the conventionally transferred GR electrodes and indium tin oxide electrodes.  相似文献   

10.
Heterojunctions formed by ultrathin conductive polymer [poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate)—PEDOT:PSS] films and n‐type crystalline silicon are investigated by photoelectron spectroscopy. Large shifts of Si 2p core levels upon PEDOT:PSS deposition provide evidence that a dopant‐free p–n junction, i.e., an inversion layer, is formed within Si. Among the investigated PEDOT:PSS formulations, the largest induced band bending within Si (0.71 eV) is found for PH1000 (high PEDOT content) combined with a wetting agent and the solvent additive dimethyl sulfoxide (DMSO). Without DMSO, the induced band bending is reduced, as is also the case with a PEDOT:PSS formulation with higher PSS content. The interfacial energy level alignment correlates well with the characteristics of PEDOT:PSS/n‐Si solar cells, where high polymer conductivity and sufficient Si‐passivation are also required to achieve high power conversion efficiency.  相似文献   

11.
Realization of synchronous improvement in optical management and electrical engineering is necessary to achieve high‐performance photovoltaic device. However, inherent challenges are faced in organic‐silicon heterojunction solar cells (HSCs) due to the poor contact property of polymer on structured silicon surface. Herein, a remarkable efficiency boost from 12.6% to over 16.7% in poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/n‐silicon (PEDOT:PSS/n‐Si) HSCs by independent optimization of hole‐/electron‐selective contacts only relying on solution‐based processes is realized. A bilayer PEDOT:PSS film with different functionalizations is utilized to synchronously realize conformal contact and effective carrier collection on textured Si surface, making the photogenerated carriers be well separated at heterojunction interface. Meanwhile, fullerene derivative is used as electron‐transporting layer at the rear n‐Si/Al interface to reduce the contact barrier. The study of carriers' transport and independent optimization on separately contacted layers may lead to an effective and simplified path to fabricate high‐performance organic‐silicon heterojunction devices.  相似文献   

12.
Since perovskite precursor solution is typically prepared from high boiling point solvents, understanding the effect of high boiling point solvent treatment of the PEDOT:PSS layer on the performance of perovskite solar cells is important for device processing optimization. In this paper, influence of the surface treatment of the PEDOT:PSS layer with high boiling point solvent, including N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), and ethylene glycol (EG), on the device performance of the perovskite solar cells was investigated. Increased conductivity was measured for the PEDOT:PSS film after solvent treatments, which was ascribed to the partial removal of PSS component from the PEDOT:PSS layer, as evidenced by the UV–vis absorption spectroscopy and XPS spectroscopy. In comparison with the reference cell, poorer device performance was obtained for the perovskite solar cells directly deposited on the solvent washed PEDOT:PSS film, which was ascribed to the increased pin hole density of the perovskite films. However, insertion of a thin PSSNa layer between the PEDOT:PSS layer and the perovskite layer greatly improved device performance, demonstrating that PSS-rich surface is favorite for the crystal growth of the perovskite film. Increased external quantum efficiency over 600–750 nm was measured for the cells based on solvent treated PEDOT:PSS layer, leading to a short circuit current and the consequent performance enhancement.  相似文献   

13.
We report a simple processing method to simultaneously improve the efficiency and stability of organic solar cells (OSCs). Poly(4-styrene sulfonate)-doped poly(3,4-ethylenedioxy-thiophene (PEDOT:PSS), widely used as hole transport layer (HTL) in OSCs, tends to accelerate the degradation of devices because of its hygroscopic and acidic properties. In this regard, we have modified PEDOT:PSS to reduce its hygroscopic and acidic properties through a condensation reaction between PEDOT:PSS and poly(ethylene glycol) methyl ether (PEGME) in order to improve the efficiency and stability of OSCs. As a result, the power conversion efficiency (PCE) increased by 21%, from 2.57% up to 3.11%. A better energy level alignment by the reduced work function of the modified PEDOT:PSS with a highest occupied molecular orbital (HOMO) level of poly(3-hexylthiophene-2,5-diyl) (P3HT) is considered the origin of the improved the efficiency. The half-life of OSCs with PEDOT:PSS modified with PEGME buffer layer also increased up to 3.5 times compared to that of devices with pristine PEDOT:PSS buffer layer.  相似文献   

14.
Graphene oxide (GO) with single layer was moderately reduced at 200 °C for 4 h under N2. Then the moderately reduced graphene oxide (rGO) water solution was employed as an additive to tune the properties of conventional poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) solution. It's found that the incorporation of rGO into PEDOT:PSS nearly did not change its transparency, hydrophilic property, or the surface roughness. So, the rGO/PEDOT:PSS composite was used as a hole transport layer (HTL) to fabricate perovskite solar cells (PSCs). As a result, PSCs with rGO/PEDOT:PSS as HTL exhibit improved power conversion efficiency than that of PSCs with PEDOT:PSS as HTL. Our findings show that moderately reduced rGO/PEDOT:PSS could be an efficient HTL to improve power conversion efficiency of PSCs.  相似文献   

15.
PEDOT:PSS is one of the most widely used hole transporting layer for inverted perovskite solar cells. Yet the performances of the corresponding perovskite solar cells are not satisfactory. Here, we demonstrate that KCl modified PEDOT:PSS film can promote the crystallization of perovskite film and enlarge the perovskite crystals. At the same time, KCl can diffuse into the perovskite film and effectively passivate the defects. As a result, inverted perovskite solar cells fabricated on 10 mg mL−1 PEDOT:PSS/KCl films exhibit an average power conversion efficiency of 16.24 %, which is enhanced by 17.77 % compared with the reference perovskite solar cells. Open circuit voltage of 1.009 V and power conversion efficiency of 17.09 % have also been demonstrated using the optimized 10 mg mL−1 PEDOT:PSS/KCl films.  相似文献   

16.
One effective strategy to improve the performance of perovskite solar cells (PSCs) is to develop new hole transport layers (HTLs). In this work, a simple polyelectrolyte HTL, copper (II) poly(styrene sulfonate) (Cu:PSS), which comprises easily reduced Cu2+ counter-ions with an anionic PSS polyelectrolyte backbone is investigated. Photoelectron spectroscopy reveals an increase in the work function of the anode and upward band bending effect upon incorporation of Cu:PSS in PSC devices. Cu:PSS shows a synergistic effect when mixed with polyethylenedioxythiophene: polystyrenesulfonate (PEDOT:PSS) in various proportions and results in a decrease in the acidity of PEDOT:PSS as well as reduced hysteresis in completed devices. Cu:PSS functions effectively as a HTL in PSCs, with device parameters comparable to PEDOT:PSS, while mixtures of Cu:PSS with PEDOT:PSS shows greatly improved performance compared to PEDOT:PSS alone. Optimized devices incorporating Cu:PSS/PEDOT:PSS mixtures show an improvement in efficiency from 14.35 to 19.44% using a simple CH3NH3PbI3 active layer in an inverted (P-I-N) geometry, which is one of the highest values yet reported for this type of device. It is expected that this type of HTL can be employed to create p-type contacts and improve performance in other types of semiconducting devices as well.  相似文献   

17.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

18.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

19.
Multilayered polymer thin‐film solar cells have been fabricated by wet processes such as spin‐coating and layer‐by‐layer deposition. Hole‐ and electron‐transporting layers were prepared by spin‐coating with poly(3,4‐ethylenedioxythiophene) oxidized with poly(4‐styrenesulfonate) (PEDOT:PSS) and fullerene (C60), respectively. The light‐harvesting layer of poly‐(p‐phenylenevinylene) (PPV) was fabricated by layer‐by‐layer deposition of the PPV precursor cation and poly(sodium 4‐styrenesulfonate) (PSS). The layer‐by‐layer technique enables us to control the layer thickness with nanometer precision and select the interfacial material at the donor–acceptor heterojunction. Optimizing the layered nanostructures, we obtained the best‐performance device with a triple‐layered structure of PEDOT:PSS|PPV|C60, where the thickness of the PPV layer was 11 nm, comparable to the diffusion length of the PPV singlet exciton. The external quantum efficiency spectrum was maximum (ca. 20%) around the absorption peak of PPV and the internal quantum efficiency was estimated to be as high as ca. 50% from a saturated photocurrent at a reverse bias of ?3 V. The power conversion efficiency of the triple‐layer solar cell was 0.26% under AM1.5G simulated solar illumination with 100 mW cm?2 in air.  相似文献   

20.
The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole‐conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin‐coating poly(9,9‐dioctyl‐fluorene‐coN‐ (4‐butylphenyl)‐diphenylamine) (TFB) on top of the poly(3,4‐ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole‐injection energy barriers, bulk charge‐transport properties, and current–voltage characteristics observed in a representative PFO‐based (PFO: poly(9,9‐dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole‐injection properties of organic electronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号