首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it is commonly believed that the water‐dissociation‐related Volmer process is the rate‐limiting step for alkaline hydrogen evolution reaction (HER) on Pt‐based catalysts, the underlying essence, particularly on the atomic scale, still remains unclear. Herein, it is revealed that the sluggish water‐dissociation behavior probably stems from unfavorable orbital orientation and the kinetic issue is successfully resolved via N‐induced orbital tuning. Impressively, N modified Pt–Ni nanowires deliver an ultralow overpotential of 13 mV at 10 mA cm?2, which represents a new benchmark for alkaline HER catalysis. Fine‐structural characterization and density functional theory analysis illustrate that the introduced nitrogen can uniquely modulate the electron densities around the Ni sites, and further create empty dz2 orbitals with superior orientation for water adsorption and activation. More importantly, it is demonstrated that N‐induced orbital modulation can generally boost the alkaline HER activities of Pt–Co, Pt–Ni, and Pt–Cu, offering a new perspective for the design of HER catalysts and beyond.  相似文献   

2.
Exploring effective electrocatalysts is a crucial requirement for boosting the efficiency of water splitting to obtain clean fuels. Here, a self‐templating strategy is reported to synthesize Ni–Fe mixed diselenide cubic nanocages for the electrocatalytic oxygen evolution reaction (OER). The diselenide nanocages are derived from corresponding Prussian‐blue analog nanocages, which are first obtained by treating the nanocube precursor with a site‐selective ammonia etchant. The resulting Ni–Fe mixed diselenide nanocages perform as a superior OER electrocatalyst, which affords a current density of 10 mA cm?2 at a small overpotential of 240 mV; a high current density, mass activity, and turnover frequency of 100 mA cm?2, 1000 A g?1, and 0.58 s?1, respectively, at the overpotential of 270 mV; a Tafel slope as small as 24 mV dec?1; and excellent stability in alkaline medium.  相似文献   

3.
Developing efficient earth‐abundant MoS2 based hydrogen evolution reaction (HER) electrocatalysts is important but challenging due to the sluggish kinetics in alkaline media. Herein, a strategy to fabricate a high‐performance MoS2 based HER electrocatalyst by modulating interface electronic structure via metal oxides is developed. All the heterostructure catalysts present significant improvement of HER electrocatalytic activities, demonstrating a positive role of metal oxides decoration in promoting the rate‐limited water dissociation step for the HER mechanism in alkaline media. The as‐obtained MoS2/Ni2O3H catalyst exhibits a low overpotential of 84 mV at 10 mA cm?2 and small charge‐transfer resistance of 1.5 Ω in 1 m KOH solution. The current density (217 mA cm?2) at the overpotential of 200 mV is about 2 and 24 times higher than that of commercial Pt/C and bare MoS2, respectively. Additionally, these MoS2/metal oxides heterostructure catalysts show outstanding long‐term stability under a harsh chronopotentiometry test. Theoretical calculations reveal the varied sensitivity of 3d‐band in different transition oxides, in which Ni‐3d of Ni2O3H is evidently activated to achieve fast electron transfer for HER as the electron‐depletion center. Both electronic properties and energetic reaction trends confirm the high electroactivity of MoS2/Ni2O3H in the adsorption and dissociation of H2O for highly efficient HER in alkaline media.  相似文献   

4.
Carbides are commonly regarded as efficient hydrogen evolution reaction (HER) catalysts, but their poor oxygen evolution reaction (OER) catalytic activities seriously limit their practical application in overall water splitting. Here, vertically aligned porous cobalt tungsten carbide nanosheet embedded in N‐doped carbon matrix (Co6W6C@NC) is successfully constructed on flexible carbon cloth (CC) as an efficient bifunctional electrocatalyst for overall water splitting via a facile metal–organic framework (MOF) derived method. The synergistic effect of Co and W atoms effectively tailors the electron state of carbide, optimizing the hydrogen‐binding energy. Thus Co6W6C@NC shows an enhanced HER performance with an overpotential of 59 mV at a current density of ?10 mA cm?2. Besides, Co6W6C@NC easily in situ transforms into tungsten actived cobalt oxide/hydroxide during the OER process, serving as OER active species, which provides an excellent OER activity with an overpotential of 286 mV at a current density of ?10 mA cm?2. The water splitting device, by applying Co6W6C@NC as both the cathode and anode, requires a low cell voltage of 1.585 V at 10 mA cm?2 with the great stability in alkaline solution. This work provides a feasible strategy to fabricate bimetallic carbides and explores their possibility as bifunctional catalysts toward overall water splitting.  相似文献   

5.
Developing highly efficient hydrogen evolution reaction (HER) catalysts in alkaline media is considered significant and valuable for water splitting. Herein, it is demonstrated that surface reorganization engineering by oxygen plasma engraving on electocatalysts successfully realizes a dramatically enhanced alkaline HER activity. Taking CoP nanowire arrays grown on carbon cloth (denoted as CoP NWs/CC) as an example, the oxygen plasma engraving can trigger moderate CoOx species formation on the surface of the CoP NWs/CC, which is visually verified by the X‐ray absorption fine structure, high‐resolution transmission electron microscopy, and energy‐dispersive spectrometer (EDS) mapping. Benefiting from the moderate CoOx species formed on the surface, which can promote the water dissociation in alkaline HER, the surface reorganization of the CoP NWs/CC realizes almost fourfold enhanced alkaline HER activity and a 180 mV decreased overpotential at 100 mA cm?2, compared with the pristine ones. More interestingly, this surface reorganization strategy by oxygen plasma engraving can also be effective to other electrocatalysts such as free‐standing CoP, Co4N, O‐CoSe2, and C‐CoSe2 nanowires, which verifies the universality of the strategy. This work thus opens up new avenues for designing alkaline HER electrocatalysts based on oxygen plasma engraving.  相似文献   

6.
Noble metal doping can achieve an increase in mass activity (MA) without sacrificing catalysis efficiency and stability, so that alkaline hydrogen evolution reaction (HER) performance of the catalyst can be optimized to the maximum degree. However, its excessively large ionic radius makes it difficult to achieve either interstitial doping or substitutional doping under mild conditions. Herein, a hierarchical nanostructured electrocatalyst with enriched amorphous/crystalline interfaces for high-efficiency alkaline HER is reported, which is composed of amorphous/crystalline (Co, Ni)11(HPO3)8(OH)6 homogeneous hierarchical structure with an ultra-low doped Pt (Pt-a/c-NiHPi). Benefiting from the structural flexibility of the amorphous component, extremely low Pt (0.21 wt.%, totally 3.31 µg Pt on 1 cm−2 NF) are stably doped on it via a simple two-phase hydrothermal method. The DFT calculations show that due to the strongly electron transfer between the crystalline/amorphous components at the interfaces, electrons finally concentrate toward Pt and Ni in the amorphous components, thus the electrocatalyst has near-optimal energy barriers and adsorption energy for H2O* and H*. With the above benefits, the obtained catalyst exhibits an exceptionally high MA (39.1 mA µg−1Pt) at 70 mV, which is almost the highest level among the reported Pt-based electrocatalysts for alkaline HER.  相似文献   

7.
Electrocatalytic hydrogen evolution reaction (HER) in alkaline media is important for hydrogen economy but suffers from sluggish reaction kinetics due to a large water dissociation energy barrier. Herein, Pt5P2 nanocrystals anchoring on amorphous nickel phosphate nanorods as a high-performance interfacial electrocatalyst system (Pt5P2 NCs/a-NiPi) for the alkaline HER are demonstrated. At the unique polycrystalline/amorphous interface with abundant defects, strong electronic interaction, and optimized intermediate adsorption strength, water dissociation is accelerated over abundant oxophilic Ni sites of amorphous NiPi, while hydride coupling is promoted on the adjacent electron-rich Pt sites of Pt5P2. Meanwhile, the ultra-small-sized Pt5P2 nanocrystals and amorphous NiPi nanorods maximize the density of interfacial active sites for the Volmer–Tafel reaction. Pt5P2 NCs/a-NiPi exhibits small overpotentials of merely 9 and 41 mV at −10 and −100 mA cm−2 in 1 M KOH, respectively. Notably, Pt5P2 NCs/a-NiPi exhibits an unprecedentedly high mass activity (MA) of 14.9 mA µgPt−1 at an overpotential of 70 mV, which is 80 times higher than that of Pt/C and represents the highest MA of reported Pt-based electrocatalysts for the alkaline HER. This work demonstrates a phosphorization and interfacing strategy for promoting Pt utilization and in-depth mechanistic insights for the alkaline HER.  相似文献   

8.
The development of cost‐efficient, active, and stable electrode materials as bifunctional catalysts for electrochemical water splitting is crucial to high‐performance renewable energy storage and conversion devices. In this work, the synthesis of Co‐based multi‐metal borides nanochains with amorphous structure is reported for boosting the oxygen evolution (OER) and hydrogen evolution reactions (HER) by one‐pot NaBH4 reduction of Co2+, Ni2+, and Fe2+ under ambient temperature. In all the investigated Co‐based metal borides, NiCoFeB nanochains show the excellent OER performance with a low overpotential of 284 mV at 10 mA cm‐2 and Tafel slope of 46 mV dec‐1, respectively, together with excellent catalytic stability, and robust HER performance with an overpotential of 345 mV at 10 mA cm‐2. The density functional theory (DFT) calculations reveal that the excellent electrocatalytic performance is mainly attributed to optimal electronic structure by tuning the Co‐3d band activities by the incorporation of Ni and Fe for enhanced water splitting via the potentially existed Co0 state. Moreover, the electrolyzer using NiCoFeB nanochains as anode and cathode offers 10 mA cm‐2 at a cell voltage of 1.81 V, comparable to commercial Pt/C // Ir/C, providing a simple method to design and explore highly efficient and cheap bifunctional electrocatalysts for overall water splitting.  相似文献   

9.
Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP?GCC) are facilely synthesized by a top‐down route applying room‐temperature synthesized Co‐based zeolitic imidazolate framework (ZIF‐67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages‐encapsulated Co9S8, the as‐obtained HCSP?GCC exhibit superior Li‐ion storage. Working in the voltage of 1.0?3.0 V, they display a very high energy density (707 Wh kg?1), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g?1 at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g?1). When the work voltage is extended into 0.01–3.0 V, a higher stable capacity of 1600 mA h g?1 at a current density of 100 mA g?1 is still achieved.  相似文献   

10.
The design on synthesizing a sturdy, low‐cost, clean, and sustainable electrocatalyst, as well as achieving high performance with low overpotential and good durability toward water splitting, is fairly vital in environmental and energy‐related subject. Herein, for the first time the growth of sulfur (S) defect engineered self‐supporting array electrode composed of metallic Re and ReS2 nanosheets on carbon cloth (referred as Re/ReS2/CC) via a facile hydrothermal method and the following thermal treatment with H2/N2 flow is reported. It is expected that, for example, the as‐prepared Re/ReS2‐7H/CC for the electrocatalytic hydrogen evolution reaction (HER) under acidic medium affords a quite low overpotential of 42 mV to achieve a current density of 10 mA cm?2 and a very small Tafel slope of 36 mV decade?1, which are comparable to some of the promising HER catalysts. Furthermore, in the two‐electrode system, a small cell voltage of 1.30 V is recorded under alkaline condition. Characterizations and density functional theory results expound that the introduced S defects in Re/ReS2‐7H/CC can offer abundant active sites to advantageously capture electron, enhance the electron transport capacity, and weaken the adsorption free energy of H* at the active sites, being responsible for its superior electrocatalytic performance.  相似文献   

11.
Developing non‐noble metal catalysts as Pt substitutes, with good activity and stability, remains a great challenge for cost‐effective electrochemical evolution of hydrogen. Herein, carbon‐encapsulated WOx anchored on a carbon support (WOx@C/C) that has remarkable Pt‐like catalytic behavior for the hydrogen evolution reaction (HER) is reported. Theoretical calculations reveal that carbon encapsulation improves the conductivity, acting as an electron acceptor/donor, and also modifies the Gibbs free energy of H* values for different adsorption sites (carbon atoms over the W atom, O atom, W? O bond, and hollow sites). Experimental results confirm that WOx@C/C obtained at 900 °C with 40 wt% metal loading has excellent HER activity regarding its Tafel slope and overpotential at 10 and 60 mA cm?2, and also has outstanding stability at ?50 mV for 18 h. Overall, the results and facile synthesis method offer an exciting avenue for the design of cost‐effective catalysts for scalable hydrogen generation.  相似文献   

12.
Searching for highly efficient and stable bifunctional electrocatalysts toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is highly desirable for the practical application of water electrolysis under alkaline electrolyte. Although electrocatalysts based on transition metal sulfides (TMSs) are widely studied as efficient (pre)catalysts toward OER under alkaline media, their HER performances are far less than the state‐of‐the‐art Pt catalyst. Herein, the synthesis of nitrogen doped 3D dandelion‐flower‐like CoS2 architecture directly grown on Ni foam (N‐CoS2/NF) is reported that possesses outstanding HER activity and durability, with an overpotential of 28 mV to obtain the current density of 10 mA cm?2, exceeding almost all the documented TMS‐based electrocatalysts. Density functional theory calculations and experimental results reveal that the d‐band center of CoS2 could be efficiently tailored by N doping, resulting in optimized adsorption free energies of hydrogen (ΔG*H) and water , which can accelerate the HER process in alkaline electrolyte. Besides, the resulting N‐CoS2/NF also displays excellent performance for OER, making it a high‐performance bifunctional electrocatalyst toward overall water splitting, with a cell voltage of 1.50 V to achieve 10 mA cm?2.  相似文献   

13.
Hydrogen evolution reaction (HER) has prospect to becoming clean and renewable technology for hydrogen production and Ni–Mo alloy is among the best HER catalysts in alkaline electrolytes. Here, an in situ topotactic reduction method to synthesize ultrathin 2D Ni–Mo alloy nanosheets for electrocatalytic hydrogen evolution is reported. Due to its ultrathin structure and tailored composition, the as‐synthesized Ni–Mo alloy shows an overpotential of 35 mV to reach a current density of 10 mA cm?2, along with a Tafel slope of 45 mV decade?1, demonstrating a comparable intrinsic activity to state‐of‐art commercial Pt/C catalyst. Besides, the vertically aligned assemble structure of the 2D NiMo nanosheets on conductive substrate makes the electrode “superaerophobic,” thus leading to much faster bubble releasing during HER process and therefore shows faster mass transfer behavior at high current density as compared with drop drying Pt/C catalyst on the same substrate. Such in situ topotactic conversion finds a way to design and fabricate low‐cost, earth‐abundant non‐noble metal based ultrathin 2D nanostructures for electrocatalytic issues.  相似文献   

14.
Developing highly efficient earth‐abundant nickel‐based compounds is an important step to realize hydrogen generation from water. Herein, the electronic modulation of the semiconducting NiS2 by cation doping for advanced water electrolysis is reported. Both theoretical calculations and temperature‐dependent resistivity measurements indicate the semiconductor‐to‐conductor transition of NiS2 after Cu incorporation. Further calculations also suggest the advantages of Cu dopant to cathodic water electrolysis by bringing Gibbs free energy of H adsorption at both Ni sites and S sites much closer to zero. It is noteworthy that water dissociation on Cu‐doped NiS2 (Cu‐NiS2) surface is even more favorable than those on NiS2 and Pt(111). Thus, the prepared Cu‐NiS2 shows noticeably improved performance toward alkaline hydrogen and oxygen evolution reactions (HER and OER). Specifically, it requires merely 232 mV OER overpotential to drive 10 mA cm?2; in parallel with Tafel slopes of 46 mV dec?1. Regarding HER, an onset overpotential of only 68 mV is achieved. When integrated as both electrodes for water electrolysis, Cu‐NiS2 needs only 1.64 V to drive 10 mA cm?2, surpassing the state‐of‐the‐art Ir/C–Pt/C couple (1.71 V). This work opens up an avenue to engineer low‐cost and earth‐abundant catalysts performing on par with the noble‐metal‐based one for water splitting.  相似文献   

15.
Developing efficient non‐noble and earth‐abundant hydrogen‐evolving electrocatalysts is highly desirable for improving the energy efficiency of water splitting in base. Molybdenum disulfide (MoS2) is a promising candidate, but its catalytic activity is kinetically retarded in alkaline media due to the unfavorable water adsorption and dissociation feature. A heterogeneous electrocatalyst is reported that is constructed by selenium‐doped MoS2 (Se‐MoS2) particles on 3D interwoven cobalt diselenide (CoSe2) nanowire arrays that drives the hydrogen evolution reaction (HER) with fast reaction kinetics in base. The resultant Se‐MoS2/CoSe2 hybrid exhibits an outstanding catalytic HER performance with extremely low overpotentials of 30 and 93 mV at 10 and 100 mA cm–2 in base, respectively, which outperforms most of the inexpensive alkaline HER catalysts, and is among the best alkaline catalytic activity reported so far. Moreover, this hybrid catalyst shows exceptional catalytic performance with very low overpotentials of 84 and 95 mV at 10 mA cm–2 in acidic and neutral electrolytes, respectively, implying robust pH universality of this hybrid catalyst. This work may provide new inspirations for the development of high‐performance MoS2‐based HER electrocatalysts in unfavorable basic media for promising catalytic applications.  相似文献   

16.
Transition metal oxides have recently received great attention for application in advanced lithium‐ion batteries (LIBs) and oxygen evolution reaction (OER). Herein, the ethylenediaminetetraacetic cobalt complex as a precursor to synthesize ultrafine Co3O4 nanoparticles encapsulated into a nitrogen‐doped carbon matrix (NC) composites is presented. The as‐prepared Co3O4/NC‐350 obtained by pyrolysis at 350 °C demonstrates superior rate performance (372 mAh g?1 at 5.0 A g?1) and high cycling stability (92% capacity retention after 300 cycles at 1.0 A g?1) as anode for LIBs. When evaluated as an electrocatalyst for OER, the Co3O4/NC‐350 achieves an overpotential of 298 mV at a current density of 10 mA cm?2. The NC‐encapsualted porous hierarchical structure assures fast and continuous electron transportation, high activity sites, and strong structural integrity. This works offers novel complex precursors for synthesizing transition metal–based electrodes for boosting electrochemical energy conversion and storage.  相似文献   

17.
Hydrogen evolution reaction (HER) in alkaline media urgently requires electrocatalysts concurrently possessing excellent activity, flexible free‐standing capability, and low cost. A honeycombed nanoporous/glassy sandwich structure fabricated through dealloying metallic glass (MG) is reported. This free‐standing hybrid shows outstanding HER performance with a very small overpotential of 37 mV at 10 mA cm?2 and a low Tafel slope of 30 mV dec?1 in alkaline media, outperforming commercial Pt/C. By alloying 3 at% Pt into the MG precursor, a honeycombed Pt75Ni25 solid solution nanoporous structure, with fertile active sites and large contact areas for efficient HER, is created on the dealloyed MG surface. Meanwhile, the surface compressive lattice‐strain effect is also introduced by substituting the Pt lattice sites with the smaller Ni atoms, which can effectively reduce the hydrogen adsorption energy and thus improve the hydrogen evolution. Moreover, the outstanding stability and flexibility stemming from the ductile MG matrix also make the hybrid suitable for practical electrode application. This work not only offers a reliable strategy to develop cost‐effective and flexible multicomponent catalysts with low Pt usage for efficient HER, but also sheds light on understanding the alloying effects of the catalytic process.  相似文献   

18.
Novel 3D Ni1?x Cox Se2 mesoporous nanosheet networks with tunable stoichiometry are successfully synthesized on Ni foam (Ni1?x Cox Se2 MNSN/NF with x ranging from 0 to 0.35). The collective effects of special morphological design and electronic structure engineering enable the integrated electrocatalyst to have very high activity for hydrogen evolution reaction (HER) and excellent stability in a wide pH range. Ni0.89Co0.11Se2 MNSN/NF is revealed to exhibit an overpotential (η10) of 85 mV at ?10 mA cm?2 in alkaline medium (pH 14) and η10 of 52 mV in acidic solution (pH 0), which are the best among all selenide‐based electrocatalysts reported thus far. In particular, it is shown for the first time that the catalyst can work efficiently in neutral solution (pH 7) with a record η10 of 82 mV for all noble metal‐free electrocatalysts ever reported. Based on theoretical calculations, it is further verified that the advanced all‐pH HER activity of Ni0.89Co0.11Se2 is originated from the enhanced adsorption of both H+ and H2O induced by the substitutional doping of cobalt at an optimal level. It is believed that the present work provides a valuable route for the design and synthesis of inexpensive and efficient all‐pH HER electrocatalysts.  相似文献   

19.
Ultrathin 2D inorganic nanomaterials are good candidates for lithium‐ion batteries, as well as the micro/nanocage structures with unique and tunable morphologies. Meanwhile, as a cost‐effective method, chemical doping plays a vital role in manipulating physical and chemical properties of metal oxides and sulfides. Thus, the design of ultrathin, hollow, and chemical doped metal sulfides shows great promise for the application of Li‐ion batteries by shortening the diffusion pathway of Li ions as well as minimizing the electrode volume change. Herein, ultrathin nanosheet assembled Sn0.91Co0.19S2 nanocages with exposed (100) facets are first synthesized. The as‐prepared electrode delivers an excellent discharge capacity of 809 mA h g?1 at a current density of 100 mA g?1 with a 91% retention after 60 discharge–charge cycles. The electrochemical performance reveals that the Li‐ion batteries prepared by Sn0.91Co0.19S2 nanocages have high capacity and great cycling stability.  相似文献   

20.
Highly active, stable, and cheap Pt‐free catalysts for the hydrogen evolution reaction (HER) are facing increasing demand as a result of their potential use in future energy‐conversion systems. However, the development of HER electrocatalysts with Pt‐like or even superior activity, in particular ones that can function under alkaline conditions, remains a significant challenge. Here, the synthesis of a novel carbon‐loaded ruthenium nanoparticle electrocatalyst (Ru@CQDs) for the HER, using carbon quantum dots (CQDs), is reported. Electrochemical tests reveal that, even under extremely alkaline conditions (1 m KOH), the as‐formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade?1, and good durability. Most importantly, it only requires an overpotential of 10 mV to achieve the current density of 10 mA cm?2. Such catalytic characteristics are superior to the current commercial Pt/C and most noble metals, non‐noble metals, and nonmetallic catalysts under basic conditions. These findings open a new field for the application of CQDs and add to the growing family of metal@CQDs with high HER performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号