首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Achieving multifunctional shape‐changing hydrogels with synergistic and engineered material properties is highly desirable for their expanding applications, yet remains an ongoing challenge. The synergistic design of multiple dynamic chemistries enables new directions for the development of such materials. Herein, a molecular design strategy is proposed based on a hydrogel combining acid–ether hydrogen bonding and imine bonds. This approach utilizes simple and scalable chemistries to produce a doubly dynamic hydrogel network, which features high water uptake, high strength and toughness, excellent fatigue resistance, fast and efficient self‐healing, and superfast, programmable shape changing. Furthermore, deformed shapes can be memorized due to the large thermal hysteresis. This new type of shape‐changing hydrogel is expected to be a key component in future biomedical, tissue, and soft robotic device applications.  相似文献   

3.
Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self‐healing and self‐recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self‐healing hydrogels generally either possess mechanically robust or rapid self‐healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self‐healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self‐healing hydrogels are reviewed. Specifically, methods to test self‐healing efficiencies and recoveries, mechanisms of autonomous self‐healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self‐heal better also achieve self‐healing faster, as compared to gels that only partially self‐heal. Recommendations to guide future development of self‐healing hydrogels are offered and the potential relevance of self‐healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.  相似文献   

4.
5.
6.
7.
8.
High‐water‐content hydrogels that are both mechanically robust and conductive could have wide applications in fields ranging from bioengineering and electronic devices to medicine; however, creating such materials has proven to be extremely challenging. This study presents a scalable methodology to prepare superelastic, cellular‐structured nanofibrous hydrogels (NFHs) by combining alginate and flexible SiO2 nanofibers. This approach causes naturally abundant and sustainable alginate to assemble into 3D elastic bulk NFHs with tunable water content and desirable shapes on a large scale. The resultant NFHs exhibit the integrated properties of ultrahigh water content (99.8 wt%), complete recovery from 80% strain, zero Poisson's ratio, shape‐memory behavior, injectability, and elastic‐responsive conductivity, which can detect dynamic pressure in a wide range (>50 Pa) with robust sensitivity (0.24 kPa?1) and durability (100 cycles). The fabrication of such fascinating materials may provide new insights into the design and development of multifunctional hydrogels for various applications.  相似文献   

9.
Injectable and malleable hydrogels that combine excellent biocompatibility, physiological stability, and ease of use are highly desirable for biomedical applications. Here, a simple and scalable strategy is reported to make injectable and malleable zwitterionic polycarboxybetaine hydrogels, which are superhydrophilic, nonimmunogenic, and completely devoid of nonspecific interactions. When zwitterionic microgels are reconstructed, the combination of covalent crosslinking inside each microgel and supramolecular interactions between them gives the resulting zwitterionic injectable pellet (ZIP) constructs supportive moduli and tunable viscoelasticity. ZIP constructs can be lyophilized to a sterile powder that fully recovers its strength and elasticity upon rehydration, simplifying storage and formulation. The lyophilized powder can be reconstituted with any aqueous suspension of cells or therapeutics, and rapidly and spontaneously self‐heals into a homogeneous composite construct. This versatile and highly biocompatible platform material shows great promise for many applications, including as an injectable cell culture scaffold that promotes multipotent stem cell expansion and provides oxidative stress protection.  相似文献   

10.
11.
12.
13.
14.
15.
16.
A notable challenge for the design of engineered living materials (ELMs) is programming a cellular system to assimilate resources from its surroundings and convert them into macroscopic materials with specific functions. Here, an ELM that uses Escherichia coli as its cellular chassis and engineered curli nanofibers as its extracellular matrix component is demonstrated. Cell‐laden hydrogels are created by concentrating curli‐producing cultures. The rheological properties of the living hydrogels are modulated by genetically encoded factors and processing steps. The hydrogels have the ability to grow and self‐renew when placed under conditions that facilitate cell growth. Genetic programming enables the gels to be customized to interact with different tissues of the gastrointestinal tract selectively. This work lays a foundation for the application of ELMs with therapeutic functions and extended residence times in the gut.  相似文献   

17.
Supramolecular hydrogels assembled from amino acids and peptide‐derived hydrogelators have shown great potential as biomimetic three‐dimensional (3D) extracellular matrices because of their merits over conventional polymeric hydrogels, such as non‐covalent or physical interactions, controllable self‐assembly, and biocompatibility. These merits enable hydrogels to be made not only by using external stimuli, but also under physiological conditions by rationally designing gelator structures, as well as in situ encapsulation of cells into hydrogels for 3D culture. This review will assess current progress in the preparation of amino acids and peptide‐based hydrogels under various kinds of external stimuli, and in situ encapsulation of cells into the hydrogels, with a focus on understanding the associations between their structures, properties, and functions during cell culture, and the remaining challenges in this field. The amino acids and peptide‐based hydrogelators with rationally designed structures have promising applications in the fields of regenerative medicine, tissue engineering, and pre‐clinical evaluation.  相似文献   

18.
Controlled membrane fusion of proteinosome‐based protocells is achieved via a hydrogel‐mediated process involving dynamic covalent binding, self‐healing, and membrane reconfiguration at the contact interface. The rate of proteinosome fusion is dependent on dynamic Schiff base covalent interchange, and is accelerated in the presence of encapsulated glucose oxidase and glucose, or inhibited with cinnamyl aldehyde due to enzyme‐mediated decreases in pH or competitive covalent binding, respectively. The coordinated fusion of the proteinosomes leads to the concomitant transportation and redistribution of entrapped payloads such as DNA and dextran. Silica colloids with amino‐functionalized surfaces undergo partial fusion with the proteinosomes via a similar dynamic hydrogel‐mediated mechanism. Overall, the strategy provides opportunities for the development of interacting colloidal objects, control of collective behavior in soft matter microcompartmentalized systems, and increased complexity in synthetic protocell communities.  相似文献   

19.
20.
Load‐bearing soft tissues, e.g., cartilage, ligaments, and blood vessels, are made predominantly from water (65–90%) which is essential for nutrient transport to cells. Yet, they display amazing stiffness, toughness, strength, and deformability attributed to the reconfigurable 3D network from stiff collagen nanofibers and flexible proteoglycans. Existing hydrogels and composites partially achieve some of the mechanical properties of natural soft tissues, but at the expense of water content. Concurrently, water‐rich biomedical polymers are elastic but weak. Here, biomimetic composites from aramid nanofibers interlaced with poly(vinyl alcohol), with water contents of as high as 70–92%, are reported. With tensile moduli of ≈9.1 MPa, ultimate tensile strains of ≈325%, compressive strengths of ≈26 MPa, and fracture toughness of as high as ≈9200 J m?2, their mechanical properties match or exceed those of prototype tissues, e.g., cartilage. Furthermore, with reconfigurable, noncovalent interactions at nanomaterial interfaces, the composite nanofiber network can adapt itself under stress, enabling abiotic soft tissue with multiscale self‐organization for effective load bearing and energy dissipation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号