首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, a new fibrous conjugated microporous polymer bearing phenazine species (PNZ-CMP) is reported as a universal and ultrastable electrode to host various mono- and multi-valent charge carriers for diverse aqueous rechargeable cells combining rapid kinetics, ultralong lifespan, and chemical rechargeability. The porous cross-linked structure, interconnected donor-acceptor network, and readily accessible active sites endow PNZ-CMP with highly-reversible redox activity, superhydrophilicity, facile electron transport, high ion diffusion coefficient, and all-pH-adaptability (−1 to 15) in aqueous electrolytes. Thus, adopting PNZ-CMP electrodes enables good compatibility with H+/Li+/Na+/K+/Zn2+/Al3+ ions and fast surface-controlled redox reactions for diverse aqueous battery chemistry. Multiple PNZ-CMP-based full cells show superior electrochemical performance especially ultralong lifespan, e.g., ≈84% capacity retention over 200 days for K+, ≈100% over 127 days for Zn2+, and ≈76% over 47 days for anion-coordinated Al ions, surpassing small molecule counterparts and most previously-reported corresponding systems. The spontaneous redox chemistry of reduced phenazine species with O2 is first explored to render PNZ-CMP with repeatable chemical self-chargeability in four electrolytes. Especially in 0.05 m H2SO4, an accumulative discharge capacity up to 48505 mAh g−1 is achieved via facile self-charging, which can originate from the “reactive antiaromaticity to stable aromaticity” conversion of the redox moieties as revealed by theoretical studies.  相似文献   

2.
Exploring novel structure prototype and mineral phase, especially open framework material, is crucial to developing high‐performance Na‐ion battery cathodes in view of potentially faster intrinsic diffusion of Na+ in lattices. Perovskite phases have been widely applied in solar cells, fuel cells, and electrocatalysis; however, they are rarely attempted as energy storage electrode materials. This study proposes pre‐expanding perovskite iron fluoride (KFeF3) framework by stuffing large‐sized K+ as a channel filler, which is advantageous over Na+, NH4+, and H2O molecule filler in terms of structure robustness, symmetry, and connectivity. K+ stuffing leads to the preservation of a more “regular” cubic phase with fast isotropic 3D diffusion as a consequence of no distortion of FeF6 octahedra during K‐Na electrochemical exchange and following Na‐insertion cycling. High‐rate Na‐storage is achievable with a reversible capacity of 110, 70, and 40 mAh g?1 at 0.1, 2, and 10 C, respectively, for this open framework fluoride cathode, benefiting from solid solution electrochemical behavior and high intrinsic diffusion coefficient. It is thought that this rate performance is currently the best among Na‐storage fluoride materials.  相似文献   

3.
Selective removal of ions from water via capacitive deionization (CDI) is relevant for environmental and industrial applications like water purification, softening, and resource recovery. Prussian blue analogs (PBAs) are proposed as an electrode material for selectively removing cations from water, based on their size. So far, PBAs used in CDI are selective toward monovalent ions. Here, vanadium hexacyanoferrate (VHCF), a PBA, is introduced as a new electrode material in a hybrid CDI setup to selectively remove divalent cations from water. These electrodes prefer divalent Ca2+ over monovalent Na+, with a separation factor, βCa/Na ≈3.5. This finding contrasts with the observed monovalent ion selectivity by PBA electrodes. This opposite behavior is understood by density functional theory simulations. Furthermore, coating the VHCF electrodes with a conducting polymer (poly-pyrrole, doped with poly-styrenesulphonate) prevents the contamination of the treated water following the degradation of the electrode. This facile and modular coating method can be effortlessly extended to other PBA electrodes, limiting the extent of treated water contamination during repeated cycling. This study paves the way for tunable selectivity while extending the library of electrodes that can be successfully used in (selective) CDI.  相似文献   

4.
A new potassium ion detection assay was developed using a dye‐labeled aptamer and conjugated polyelectrolyte (CPE) as a signaling platform via 1‐step and 2‐step fluorescence resonance energy transfer. Guanine‐rich K+‐specific aptamers were designed as K+ ion recognition species with 6‐carboxyfluorescein (6‐FAM) and 6‐carboxytetramethylrhodamine (6‐TAMRA) at both termini. In the presence of K+ ions, the aptamers undergo a conformational change from an unfolded to folded form by forming a G‐quadruplex with K+, bringing two dyes in proximity. FRET‐induced 6‐TAMRA emission was proportional to [K+] in a range of 22.5 μm –100 mm in water without interference by the presence of excess Na+ ions (100 mm ). Upon the addition of CPE, a two‐step FRET process from CPE to 6‐TAMRA via 6‐FAM was enabled, showing an intensified 6‐TAMRA signal with K+ ions. The dynamic detection range and limit of detection (LOD) was fine‐tuned from ~millimolar to ~nanomolar concentrations of K+ by modulating the signal amplification effect of CPE. The LOD was determined to be ≈3.0 nm . This detection assay also showed high selectivity against other metal ions. This sensing scheme can be extended to the detection of a wide range of target materials by simply modifying the recognition aptamer sequence.  相似文献   

5.
Hard carbon (HC) is a promising anode material for sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs), but the volume change during the insertion/extraction of Na+ or K+ limits the cycle life, especially for PIBs due to the large ion size of K+. Moreover, the conventional anodes fabricated through the coating method cannot satisfy the requirement of flexible devices. Here, it is shown that 2D carbide flakes of Ti3C2Tx MXene can be used as multifunctional conductive binders for flexible HC electrodes. The use of MXene nanosheets eliminates the need for all the electrochemically inactive components in the conventional polyvinylidene fluoride–bonded HC electrode, including polymer binders, conductive additives, and current collectors. In MXene‐bonded HC electrodes, conductive and hydrophilic MXene 2D nanosheets construct a 3D network, which can effectively stabilize the electrode structure and accommodate the volume expansion of HC during the charge/discharge process, leading to an enhanced electrode capacity and excellent cycle performance as anodes for both SIBs and PIBs. Benefiting from the 3D conductive network, the MXene‐bonded HC film electrodes also present improved rate capability, indicating MXene is a very promising multifunctional binder for next‐generation flexible secondary rechargeable batteries.  相似文献   

6.
Optical sensing materials for the selective measurement of potassium ions (K+) in water are presented. The indicator dyes are based on an aza‐crown ether as a receptor and borondipyrromethenes (BODIPY) dyes as fluorophores. Fluorescence enhancement is caused by the reduction of photoinduced electron transfer (PET) upon complexation with K+ ions. The family of new indicators possesses tuneable optical properties (green to red excitation, red to NIR emission) and PET efficiencies. They exhibit high brightness with quantum yields between 0.20 and 0.47 in the “on” state and a molar absorption coefficient between 30 000 and 290 000 m ?1 cm?1. The new indicator dyes are immobilized in biocompatible hydrogel matrices to obtain stable nonleaching and fast responding (t90 ≈ 10 s) sensing materials for continuous measurements of potassium. They are realized in various formats such as planar optodes, fiber‐optic sensors, and water‐dispersible polymer‐based nanoparticles. Apart from fluorescence intensity measurements, self‐referenced read‐out of fluorescence decay time is demonstrated. All sensor materials display a high K+/Na+ selectivity and are not influenced by pH within the physiologically relevant range. Practical applicability of the materials is emphasized by application of a fiber‐optic sensor to quantification of K+ in serum, which shows excellent correlation with the reference measurements.  相似文献   

7.
Na‐ion batteries have experienced rapid development over the past decade and received significant attention from the academic and industrial communities. Although a large amount of effort has been made on material innovations, accessible design strategies on peculiar structural chemistry remain elusive. An approach to in situ construction of new Na‐based cathode materials by substitution in alkali sites is proposed to realize long‐term cycling stability and high‐energy density in low‐cost Na‐ion cathodes. A new compound, [K0.444(1)Na1.414(1)][Mn3/4Fe5/4](CN)6, is obtained through a rational control of K+ content from electrochemical reaction. Results demonstrate that the remaining K+ (≈0.444 mol per unit) in the host matrix can stabilize the intrinsic K‐based structure during reversible Na+ extraction/insertion process without the structural evolution to the Na‐based structure after cycles. Thereby, the as‐prepared cathode shows the remarkably enhanced structural stability with the capacity retention of >78% after 1800 cycles, and a higher average operation voltage of ≈3.65 V versus Na+/Na, directly contrasting the non‐alkali‐site‐substitution cathode materials. This provides new insights into alkali‐site‐substitution constructing advanced Na‐ion cathode materials.  相似文献   

8.
In this study, organic field-effect transistors (OFETs) with extended gate structure were fabricated for selective pH sensing applications. Indium tin oxide (ITO) was used as extended gate electrode as well as an active layer for H+ sensing. The threshold voltage of the fabricated ion-selective OFET was varied by the changes in the electrochemical potential at the ITO electrode surface upon its exposure to buffer solutions with variable pH values. The sensor showed excellent linearity and a high sensitivity of 57–59 mV/pH in the pH range of 2–12. The selectivity of the ITO sensing layer to H+ ions was also investigated by measuring the interfering effect of Ca2+ and K+ ions in the buffer pH solutions. The results showed that the Ca2+ and K+ ions weakly interfere with the selective pH sensing of the ITO-extended gate OFET sensor device.  相似文献   

9.
Here, a new method is presented to increase the turn‐on time and stability of light‐emitting electrochemical cells (LECs). To this end, a neutral iridium complex ( 5 ) containing a pendant Na+ ion that is generally known to have a faster mobility in the solid film than bulky anions is introduced, instead of the classic ionic transition metal complex (iTMC) with counter anion ( 7 ). Synthesis, photophysical and electrochemical studies of these complexes are reported. In the device configuration of ITO/ 5 or 7 +PEO (polyethylene oxide) (100–110 nm)/Au, as the voltage increases, complex 5 emits red light at ?3.6 V while complex 7 appears at –5.6 V, although their electrochemical and photophysical gap are similar. Furthermore, at constant voltage, –3 V, the turn‐on time of complex 5 was less than 0.5 min, which is a 60‐fold faster turn‐on time compared to the iTMC ( 7 ) with PF6?. These results are presumably due to the faster delivery of the Na+ ions to the electrode compared to PF6? ions. Also, the device lifetime of complex 5 exhibits a six‐fold increase in stability and a three‐fold shorter time to reach maximum brightness at constant bias compared to the device made with complex 7 .  相似文献   

10.
The development of high‐energy and high‐power density sodium‐ion batteries is a great challenge for modern electrochemistry. The main hurdle to wide acceptance of sodium‐ion batteries lies in identifying and developing suitable new electrode materials. This study presents a composition‐graded cathode with average composition Na[Ni0.61Co0.12Mn0.27]O2, which exhibits excellent performance and stability. In addition to the concentration gradients of the transition metal ions, the cathode is composed of spoke‐like nanorods assembled into a spherical superstructure. Individual nanorod particles also possess strong crystallographic texture with respect to the center of the spherical particle. Such morphology allows the spoke‐like nanorods to assemble into a compact structure that minimizes its porosity and maximizes its mechanical strength while facilitating Na+‐ion transport into the particle interior. Microcompression tests have explicitly verified the mechanical robustness of the composition‐graded cathode and single particle electrochemical measurements have demonstrated the electrochemical stability during Na+‐ion insertion and extraction at high rates. These structural and morphological features contribute to the delivery of high discharge capacities of 160 mAh (g oxide)?1 at 15 mA g?1 (0.1 C rate) and 130 mAh g?1 at 1500 mA g?1 (10 C rate). The work is a pronounced step forward in the development of new Na ion insertion cathodes with a concentration gradient.  相似文献   

11.
A highly fluorescent triazine‐bridged polymer, poly[(diphenylamino‐s‐triazine)‐co‐(2‐methoxy‐5‐propyloxysulfonate‐1,4‐phenylene vinylene)] (DTMSPV), is synthesized from Wittig polycondensation of a triazine monomer with a water‐soluble p‐phenylene vinylene monomer. The fluorescent amphiphilic polymer in aqueous solution self‐assembled into nanoassemblies of micelle‐like nanostructure (MS) and π stacking nanostructure (πS), which have average sizes of 93 to 270 nm, depending on the concentration of DTMSPV. The micelle‐like nanostructure of DTMSPV (MS) shows blue emission at 457 and 488 nm with a high emission quantum yield (ΦE) of 31% in aqueous solution. On the other hand, the ΦE of π stacking structures (πS), formed in a highly concentrated solution, is lower than the MS. The MS exhibits fluorescence quenching as well as color change from blue to green/yellow, depending on the kinds of metal ions. The metal ion sensitivity is larger in the order of the main group ions (Na+, K+) < dicationic transition metal ions (Zn2+, Cd2+, Pb2+, Cu2+, Pd2+) < trivalent transition metal ions (Fe3+, Ru3+), with an exception of Al3+. In particular, the fluorescence of MS is dramatically quenched with color change to yellow in response to Al3+ concentrations. The selectivity and sensitivity of MS to Al3+ are unusually high even in the presence of competitive metal ions, which can be attributed to the specific interaction of triazine units with Al3+.  相似文献   

12.
Conjugated polymers that support mixed (electronic and ionic) conduction are in demand for applications spanning from bioelectronics to energy harvesting and storage. To design polymer mixed conductors for high‐performance electrochemical devices, relationships between the chemical structure, charge transport, and morphology must be established. A polymer series bearing the same p‐type conjugated backbone with increasing percentage of hydrophilic, ethylene glycol side chains is synthesized, and their performance in aqueous electrolyte gated organic electrochemical transistors (OECTs) is studied. By using device physics principles and electrochemical analyses, a direct relationship is found between the OECT performance and the balanced mixed conduction. While hydrophilic side chains are required to facilitate ion transport—thus enabling OECT operation—swelling of the polymer is not de facto beneficial for balancing mixed conduction. It is shown that heterogeneous water uptake disrupts the electronic conductivity of the film, leading to OECTs with lower transconductance and slower response times. The combination of in situ electrochemical and structural techniques shown here contributes to the establishment of the structure–property relations necessary to improve the performance of polymer mixed conductors and subsequently of OECTs.  相似文献   

13.
Trimetal Fe0.8CoMnO4 (FCMO) nanocrystals with a diameter of about 50 nm perfectly embedded in N doped‐carbon composite nanofibers (denoted as FCMO@C) are successfully prepared through integrating double‐nozzle electrospinning with a drying and calcination process. The as‐prepared FCMO@C nanofibers maintain a high reversible capacity of 420 mAh g?1 and about 90% capacity retention after 200 cycles at 0.1 A g?1. For a long‐term cycle, the FCMO@C electrode exhibits excellent cycling stability (87% high capacity retention at 1 A g?1 after 950 cycles). Kinetic analysis demonstrates that the electrochemical characteristics of the FCMO@C corresponds to the pseudocapacitive approach in charge storage as an anode for sodium ion batteries, which dominantly attributes the credit to FCMO nanocrystals to shorten the migration distance of Na+ ions and the nitrogen‐doped carbon skeleton to enhance the electronic transmission and favorably depress the volume expansion during the repeated insertion/extraction of Na+ ions. More significantly, a self‐supported mechanism via continuous electrochemical redox reaction of Fe, Co, and Mn can effectively relieve the volume change during charge and discharge. Therefore, this work can provide a new avenue to improve the sodium storage performance of the oxide anode materials.  相似文献   

14.
Nanoscale spinel lithium manganese oxide is of interest as a high‐rate cathode material for advanced battery technologies among other electrochemical applications. In this work, the synthesis of ultrathin films of spinel lithium manganese oxide (LiMn2O4) between 20 and 200 nm in thickness by room‐temperature electrochemical conversion of MnO grown by atomic layer deposition (ALD) is demonstrated. The charge storage properties of LiMn2O4 thin films in electrolytes containing Li+, Na+, K+, and Mg2+ are investigated. A unified electrochemical band‐diagram (UEB) analysis of LiMn2O4 informed by screened hybrid density functional theory calculations is also employed to expand on existing understanding of the underpinnings of charge storage and stability in LiMn2O4. It is shown that the incorporation of Li+ or other cations into the host manganese dioxide spinel structure (λ‐MnO2) stabilizes electronic states from the conduction band which align with the known redox potentials of LiMn2O4. Furthermore, the cyclic voltammetry experiments demonstrate that up to 30% of the capacity of LiMn2O4 arises from bulk electronic charge‐switching which does not require compensating cation mass transport. The hybrid ALD‐electrochemical synthesis, UEB analysis, and unique charge storage mechanism described here provide a fundamental framework to guide the development of future nanoscale electrode materials for ion‐incorporation charge storage.  相似文献   

15.
Lithium‐ion, sodium‐ion, and potassium‐ion batteries have captured tremendous attention in power supplies for various electric vehicles and portable electronic devices. However, their practical applications are severely limited by factors such as poor rate capability, fast capacity decay, sluggish charge storage dynamics, and low reversibility. Herein, hetero‐structured bimetallic sulfide (NiS/FeS) encapsulated in N‐doped porous carbon cubes interconnected with CNTs (Ni‐Fe‐S‐CNT) are prepared through a convenient co‐precipitation and post‐heat treatment sulfurization technique of the corresponding Prussian‐blue analogue nanocage precursor. This special 3D hierarchical structure can offer a stable interconnect and conductive network and shorten the diffusion path of ions, thereby greatly enhancing the mobility efficiency of alkali (Li, Na, K) ions in electrode materials. The Ni‐Fe‐S‐CNT nanocomposite maintains a charge capacity of 1535 mAh g?1 at 0.2 A g?1 for lithium ion batteries, 431 mAh g?1 at 0.1 A g?1 for sodium ion batteries, and 181 mAh g?1 at 0.1 A g?1 for potassium‐ion batteries, respectively. The high performance is mainly attributed to the 3D hierarchically high‐conductivity network architecture, in which the hetero‐structured FeS/NiS nanocubes provide fast Li+/Na+/K+ insertion/extraction and reduced ion diffusion paths, and the distinctive 3D networks maintain the electrical contact and guarantee the structural integrity.  相似文献   

16.
A systematic investigation is reported into the influence of the counter cations on the optical, electrical and electroluminescent properties of polyelectrolytic conjugated polymers and of their cyclodextrin‐threaded rotaxanes. We compare conjugated polyelectrolytes with sulfonated side groups where the anionic charge is balanced by Li+, K+, Cs+, tetramethylammonium (Me4N+) and cryptate‐encapsulated potassium (K+@[2.2.2]). Narrowing (for the unthreaded analogues) and a slight red‐shift of the absorption spectra (for the rotaxanes) are found upon exchange of Li+ for larger cations, together with a blue‐shift and an efficiency enhancement of the luminescence. These effects are similar in nature to those induced by rotaxination, and are therefore assigned to a marked reduction of intermolecular interactions between the conjugated cores. Exchange of Li+ for K+, Cs+, or Me4N+ results in a higher electroluminescence external quantum efficiency (EQE) for both polyrotaxanes and unthreaded polymers. For polyrotaxane‐based devices the EQE increased approximately 7 times upon substitution of Li+ with Cs+ or Me4N+, thereby demonstrating the importance of the selection of the counter‐cations for optimizing the performance of polyelectrolytic conjugated polymers in light‐emitting devices.  相似文献   

17.
Metal ions (Ag+, Cu2+, Hg2+) are incorporated into an electropolymerized, poly(N‐isopropyl acrylamide), pNIPAM, thermosensitive polymer associated with an electrode using the “breathing‐in” method. The ion‐functionalized pNIPAM matrices reveal ion‐dependent gel‐to‐solid phase‐transition temperatures (28 ± 1 °C, 25 ± 1 °C, 40 ± 1 °C for the Ag+, Cu2+, and Hg2+‐modified pNIPAM, respectively). Furthermore, the ion‐functionalized polymers exhibit quasi‐reversible redox properties, and the ions are reduced to the respective Ag0, Cu0, and Hg0 nanocluster‐modified polymers. The metal‐nanocluster‐functionalized pNIPAM matrices enhance the electron transfer (they exhibit lower electron‐transfer resistances) in the compacted states. The electron‐transfer resistances of the metal‐nanocluster‐modified pNIPAM can be cycled between low and high values by temperature‐induced switching of the polymer between its contracted solid and expanded gel states, respectively. The enhanced electron‐transfer properties of the metal nanocluster‐functionalized polymer are attributed to the contacting of the metal nanoclusters in the contracted state of the polymers. This temperature‐switchable electron transfer across a Ag0‐modified pNIPAM was implemented to design a thermo‐switchable electrocatalytic process (the temperature‐switchable electrocatalyzed reduction of H2O2 by Ag0‐pNIPAM).  相似文献   

18.
A novel positively K+‐responsive membrane with functional gates driven by host‐guest molecular recognition is prepared by grafting poly(N‐isopropylacrylamide‐co‐acryloylamidobenzo‐15‐crown‐5) (poly(NIPAM‐co‐AAB15C5)) copolymer chains in the pores of porous nylon‐6 membranes with a two‐step method combining plasma‐induced pore‐filling grafting polymerization and chemical modification. Due to the cooperative interaction of host‐guest complexation and phase transition of the poly(NIPAM‐co‐AAB15C5), the grafted gates in the membrane pores could spontaneously switch from “closed” state to “open” state by recognizing K+ ions in the environment and vice versa; while other ions (e.g., Na+, Ca2+ or Mg2+) can not trigger such an ion‐responsive switching function. The positively K+‐responsive gating action of the membrane is rapid, reversible, and reproducible. The proposed K+‐responsive gating membrane provide a new mode of behavior for ion‐recognizable “smart” or “intelligent” membrane actuators, which is highly attractive for controlled release, chemical/biomedical separations, tissue engineering, sensors, etc.  相似文献   

19.
This work studies for the first time the metallic 1T MoS2 sandwich grown on graphene tube as a freestanding intercalation anode for promising sodium‐ion batteries (SIBs). Sodium is earth‐abundant and readily accessible. Compared to lithium, the main challenge of sodium‐ion batteries is its sluggish ion diffusion kinetic. The freestanding, porous, hollow structure of the electrode allows maximum electrolyte accessibility to benefit the transportation of Na+ ions. Meanwhile, the metallic MoS2 provides excellent electron conductivity. The obtained 1T MoS2 electrode exhibits excellent electrochemical performance: a high reversible capacity of 313 mAh g?1 at a current density of 0.05 A g?1 after 200 cycles and a high rate capability of 175 mAh g?1 at 2 A g?1. The underlying mechanism of high rate performance of 1T MoS2 for SIBs is the high electrical conductivity and excellent ion accessibility. This study sheds light on using the 1T MoS2 as a novel anode for SIBs.  相似文献   

20.
Potassium‐ion batteries (PIBs) are currently drawing increased attention as a promising alternative to lithium‐ion batteries (LIBs) owing to the abundant resource and low cost of potassium. However, due to the large ionic radius size of K+, electrode material that can stably maintain K+ insertion/deintercalation is still extremely inadequate, especially for anode material with a satisfactory reversible capacity. As an attempt, nitrogen/carbon dual‐doped hierarchical NiS2 is introduced as the electrode material in PIBs for the first time. Considering that the introduction of the carbon layer effectively alleviates the volume expansion of the material itself, further improves the electronic conductivity, and finally accelerates the charge transfer of K+, not surprisingly, NiS2 decorated with the bifunctional carbon (NiS2@C@C) material electrode shows excellent potassium storage performances. When utilized as a PIB anode, it delivers a high reversible capacity of 302.7 mAh g?1 at 50 mA g?1 after 100 cycles. The first coulombic efficiency is 78.6% and rate performance is 151.2 mAh g?1 at 1.6 A g?1 of the NiS2@C@C, which are also notable. Given such remarkable electrochemical properties, this work is expected to provide more possibilities for the reasonable design of advanced electrode materials for metal sulfide potassium ion batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号