首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Since the first development of large‐area graphene synthesis by the chemical vapor deposition (CVD) method in 2009, CVD‐graphene has been considered to be a key material in the future electronics, energy, and display industries, which require transparent, flexible, and stretchable characteristics. Although many graphene‐based prototype applications have been demonstrated, several important issues must be addressed in order for them to be compatible with current complementary metal‐oxide‐semiconductor (CMOS)‐based manufacturing processes. In particular, metal contamination and mechanical damage, caused by the metal catalyst for graphene growth, are known to cause severe and irreversible deterioration in the performance of devices. The most effective way to solve the problems is to grow the graphene directly on the semiconductor substrate. Herein, recent advances in the direct growth of graphene on group‐IV semiconductors are reviewed, focusing mainly on the growth mechanism and initial growth behavior when graphene is synthesized on Si and Ge. Furthermore, recent progress in the device applications of graphene with Si and Ge are presented. Finally, perspectives for future research in graphene with a semiconductor are discussed.  相似文献   

2.
Mono‐ to few‐layers of 2D semiconducting materials have uniquely inherent optical, electronic, and magnetic properties that make them ideal for probing fundamental scientific phenomena up to the 2D quantum limit and exploring their emerging technological applications. This Review focuses on the fundamental optoelectronic studies and potential applications of in‐plane isotropic/anisotropic 2D semiconducting heterostructures. Strong light–matter interaction, reduced dimensionality, and dielectric screening in mono‐ to few‐layers of 2D semiconducting materials result in strong many‐body interactions, leading to the formation of robust quasiparticles such as excitons, trions, and biexcitons. An in‐plane isotropic nature leads to the quasi‐2D particles, whereas, an anisotropic nature leads to quasi‐1D particles. Hence, in‐plane isotropic/anisotropic 2D heterostructures lead to the formation of quasi‐1D/2D particle systems allowing for the manipulation of high binding energy quasi‐1D particle populations for use in a wide variety of applications. This Review emphasizes an exciting 1D–2D particles dynamic in such heterostructures and their potential for high‐performance photoemitters and exciton–polariton lasers. Moreover, their scopes are also broadened in thermoelectricity, piezoelectricity, photostriction, energy storage, hydrogen evolution reactions, and chemical sensor fields. The unique in‐plane isotropic/anisotropic 2D heterostructures may open the possibility of engineering smart devices in the nanodomain with complex opto‐electromechanical functions.  相似文献   

3.
The development of omnidirectionally stretchable pressure sensors with high performance without stretching‐induced interference has been hampered by many challenges. Herein, an omnidirectionally stretchable piezoresistive pressure‐sensing device is demonstrated by combining an omniaxially stretchable substrate with a 3D micropattern array and solution‐printing of electrode and piezoresistive materials. A unique substrate structural design and materials mean that devices that are highly sensitive are rendered, with a stable out‐of‐plane pressure response to both static (sensitivity of 0.5 kPa?1 and limit of detection of 28 Pa) and dynamic pressures and the minimized in‐plane stretching responsiveness (a small strain gauge factor of 0.17), achieved through efficient strain absorption of the electrode and sensing materials. The device can detect human‐body tremors, as well as measure the relative elastic properties of human skin. The omnidirectionally stretchable pressure sensor with a high pressure sensitivity and minimal stretch‐responsiveness yields great potential to skin‐attachable wearable electronics, human–machine interfaces, and soft robotics applications.  相似文献   

4.
Silk is a natural fiber renowned for its outstanding mechanical properties that have enabled the manufacturing of ultralight and ultrastrong textiles. Recent advances in silk processing and manufacturing have underpinned a re‐interpretation of silk from textiles to technological materials. Here, it is argued that silk materials—optimized by selective pressure to work in the environment at the biotic–abiotic interface—can be harnessed by human micro‐ and nanomanufacturing technology to impart new functionalities and opportunities. A critical overview of recent progress in silk technology is presented with emphasis on high‐tech applications enabled by recent innovations in multilevel modifications, multiscale manufacturing, and multimodal characterization of silk materials. These advances have enabled successful demonstrations of silk materials across several disciplines, including tissue engineering, drug delivery, implantable medical devices, and biodissolvable/degradable devices.  相似文献   

5.
Black phosphorus (BP) is an emerging two‐dimensional (2D) material with a natural bandgap, which has unique anisotropy and extraordinary physical properties. Due to its puckered structure, BP exhibits strong in‐plane anisotropy unlike other layered materials. The bandgap tunability of BP enables a wide range of ultrafast electronics and high frequency optoelectronic applications ranging from telecommunications to thermal imaging covering the nearly entire electromagnetic spectrum, whereas no other 2D material has this functionality. Here, recent advances in the synthesis, fabrication, anisotropic physical properties, and BP‐based devices including field effect transistors (FETs) and photodetectors, are discussed. Recent passivation approaches to address the degradation of BP, which is one of the main challenges to bring this material into real world applications, are also introduced. Finally, a comment is made on the recent developments in other emerging applications, future outlook and challenges ahead in BP research.  相似文献   

6.
Reducing the dimensions of materials is one of the key approaches to discovering novel optical phenomena. The recent emergence of 2D transition metal dichalcogenides (TMDCs) has provided a promising platform for exploring new optoelectronic device applications, with their tunable electronic properties, structural controllability, and unique spin valley–coupled systems. This progress report provides an overview of recent advances in TMDC‐based light‐emitting devices discussed from several aspects in terms of device concepts, material designs, device fabrication, and their diverse functionalities. First, the advantages of TMDCs used in light‐emitting devices and their possible functionalities are presented. Second, conventional approaches for fabricating TMDC light‐emitting devices are emphasized, followed by introducing a newly established, versatile method for generating light emission in TMDCs. Third, current growing technologies for heterostructure fabrication, in which distinct TMDCs are vertically stacked or laterally stitched, are explained as a possible means for designing high‐performance light‐emitting devices. Finally, utilizing the topological features of TMDCs, the challenges for controlling circularly polarized light emission and its device applications are discussed from both theoretical and experimental points of view.  相似文献   

7.
2D semiconductor materials are being considered for next generation electronic device application such as thin‐film transistors and complementary metal–oxide–semiconductor (CMOS) circuit due to their unique structural and superior electronics properties. Various approaches have already been taken to fabricate 2D complementary logics circuits. However, those CMOS devices mostly demonstrated based on exfoliated 2D materials show the performance of a single device. In this work, the design and fabrication of a complementary inverter is experimentally reported, based on a chemical vapor deposition MoS2 n‐type transistor and a Si nanomembrane p‐type transistor on the same substrate. The advantages offered by such CMOS configuration allow to fabricate large area wafer scale integration of high performance Si technology with transition‐metal dichalcogenide materials. The fabricated hetero‐CMOS inverters which are composed of two isolated transistors exhibit a novel high performance air‐stable voltage transfer characteristic with different supply voltages, with a maximum voltage gain of ≈16, and sub‐nano watt power consumption. Moreover, the logic gates have been integrated on a plastic substrate and displayed reliable electrical properties paving a realistic path for the fabrication of flexible/transparent CMOS circuits in 2D electronics.  相似文献   

8.
On‐chip strain engineering is highly demanded in 2D materials as an effective route for tuning their extraordinary properties and integrating consistent functionalities toward various applications. Herein, rolling technique is proposed for strain engineering in monolayer graphene grown on a germanium substrate, where compressive or tensile strain could be acquired, depending on the designed layer stressors. Unusual compressive strains up to 0.30% are achieved in the rolled‐up graphene tubular structures. The subsequent phonon hardening under compressive loading is observed through strain‐induced Raman G band splitting, while distinct blueshifts of characteristic peaks (G+, G?, or 2D) can be well regulated on an asymmetric tubular structure with a strain variation. In addition, due to the strong confinement of the local electromagnetic field under 3D tubular geometry, the photon–phonon interaction is highly strengthened, and thus, the Raman scattering of graphene in rolled‐up tubes is enhanced. Such an on‐chip rolling approach leads to a superior strain tuning method in 2D materials and could improve their light–matter interaction in a tubular configuration, which may hold great capability in 2D materials integration for on‐chip applications such as in mechanics, electronics, and photonics.  相似文献   

9.
Quasi‐1D colloidal semiconductor nanorods (NRs) are at the forefront of nanoparticle (NP) research owing to their intriguing size‐dependent and shape‐dependent optical and electronic properties. The past decade has witnessed significant advances in both fundamental understanding of the growth mechanisms and applications of these stimulating materials. Herein, the state‐of‐the‐art of colloidal semiconductor NRs is reviewed, with special emphasis on heavy‐metal‐free materials. The main growth mechanisms of heavy‐metal‐free colloidal semiconductor NRs are first elaborated, including anisotropic‐controlled growth, oriented attachment, solution–liquid–solid method, and cation exchange. Then, structural engineering and properties of semiconductor NRs are discussed, with a comprehensive overview of core/shell structures, alloying, and doping, as well as semiconductor–metal hybrid nanostructures, followed by highlighted practical applications in terms of photocatalysis, photodetectors, solar cells, and biomedicine. Finally, challenges and future opportunities in this fascinating research area are proposed.  相似文献   

10.
The rapid development and further modularization of miniaturized and self‐powered electronic systems have substantially stimulated the urgent demand for microscale electrochemical energy storage devices, e.g., microbatteries (MBs) and micro‐supercapacitors (MSCs). Recently, planar MBs and MSCs, composed of isolated thin‐film microelectrodes with extremely short ionic diffusion path and free of separator on a single substrate, have become particularly attractive because they can be directly integrated with microelectronic devices on the same side of one single substrate to act as a standalone microsized power source or complement miniaturized energy‐harvesting units. The development of and recent advances in planar MBs and MSCs from the fundamentals and design principle to the fabrication methods of 2D and 3D planar microdevices in both in‐plane and stacked geometries are highlighted. Additonally, a comprehensive analysis of the primary aspects that eventually affect the performance metrics of microscale energy storage devices, such as electrode materials, electrolyte, device architecture, and microfabrication techniques are presented. The technical challenges and prospective solutions for high‐energy‐density planar MBs and MSCs with multifunctionalities are proposed.  相似文献   

11.
2D layered materials have emerged in recent years as a new platform to host novel electronic, optical, or excitonic physics and develop unprecedented nanoelectronic and energy applications. By definition, these materials are strongly anisotropic between the basal plane and cross the plane. The structural and property anisotropies inside their basal plane, however, are much less investigated. Black phosphorus, for example, is a 2D material that has such in‐plane anisotropy. Here, a rare chemical form of arsenic, called black‐arsenic (b‐As), is reported as a cousin of black phosphorus, as an extremely anisotropic layered semiconductor. Systematic characterization of the structural, electronic, thermal, and electrical properties of b‐As single crystals is performed, with particular focus on its anisotropies along two in‐plane principle axes, armchair (AC) and zigzag (ZZ). The analysis shows that b‐As exhibits higher or comparable electronic, thermal, and electric transport anisotropies between the AC and ZZ directions than any other known 2D crystals. Such extreme in‐plane anisotropies can potentially implement novel ideas for scientific research and device applications.  相似文献   

12.
Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single‐crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as out‐of‐plane compression, which can induce damage in or failure of the structures/devices. Here, the mechanical responses of a few mechanically assembled 3D kirigami mesostructures under flat‐punch compression are studied through combined experiment and finite element analyses. These 3D kirigami mesostructures consisting of a bilayer of Si and SU‐8 epoxy are formed through integration of patterned 2D precursors with a prestretched elastomeric substrate at predefined bonding sites to allow controlled buckling that transforms them into desired 3D configurations. In situ scanning electron microscopy measurement enables detailed studies of the mechanical behavior of these structures. Analysis of the load–displacement curves allows the measurement of the effective stiffness and elastic recovery of various 3D structures. The compression experiments indicate distinct regimes in the compressive force/displacement curves and reveals different geometry‐dependent deformation for the structures. Complementary computational modeling supports the experimental findings and further explains the geometry‐dependent deformation.  相似文献   

13.
Due to their potential applications in physiological monitoring, diagnosis, human prosthetics, haptic perception, and human–machine interaction, flexible tactile sensors have attracted wide research interest in recent years. Thanks to the advances in material engineering, high performance flexible tactile sensors have been obtained. Among the representative pressure sensing materials, 2D layered nanomaterials have many properties that are superior to those of bulk nanomaterials and are more suitable for high performance flexible sensors. As a class of 2D inorganic compounds in materials science, MXene has excellent electrical, mechanical, and biological compatibility. MXene-based composites have proven to be promising candidates for flexible tactile sensors due to their excellent stretchability and metallic conductivity. Therefore, great efforts have been devoted to the development of MXene-based composites for flexible sensor applications. In this paper, the controllable preparation and characterization of MXene are introduced. Then, the recent progresses on fabrication strategies, operating mechanisms, and device performance of MXene composite-based flexible tactile sensors, including flexible piezoresistive sensors, capacitive sensors, piezoelectric sensors, triboelectric sensors are reviewed. After that, the applications of MXene material-based flexible electronics in human motion monitoring, healthcare, prosthetics, and artificial intelligence are discussed. Finally, the challenges and perspectives for MXene-based tactile sensors are summarized.  相似文献   

14.
Borophene, an elemental metallic Dirac material is predicted to have unprecedented mechanical and electronic character. Need of substrate and ultrahigh vacuum conditions for deposition of borophene restricts its large‐scale applications and significantly hampers the advancement of research on borophene. Herein, a facile and large‐scale synthesis of freestanding atomic sheets of borophene through a novel liquid‐phase exfoliation and the reduction of borophene oxide is demonstrated. Electron microscopy confirms the presence of β12, X3, and their intermediate phases of borophene; X‐ray photoelectron spectroscopy, and scanning tunneling microscopy, corroborated with density functional theory band structure calculations, validate the phase purity and the metallic nature. Borophene with excellent anchoring capabilities is used for sensing of light, gas, molecules, and strain. Hybrids of borophene as well as that of reduced borophene oxide with other 2D materials are synthesized, and the predicted superior performance in energy storage is explored. The specific capacity of borophene oxide is observed to be ≈4941 mAh g?1, which significantly exceeds that of existing 2D materials and their hybrids. These freestanding borophene materials and their hybrids will create a huge breakthrough in the field of 2D materials and could help to develop future generations of devices and emerging applications.  相似文献   

15.
As one of the most important semiconductor materials, silicon (Si) has been widely used in current energy and optoelectronic devices, such as solar cells and photodetectors. However, the traditional Si p–n junction solar cells need complicated fabrication processes, leading to the high cost of Si photovoltaic devices. The wide applications of Si-based photodetectors are also hampered by their low sensitivity to ultraviolet and infrared light. Recently, two-dimensional (2D) layered materials have emerged as a new material system with tremendous potential for future energy and optoelectronic applications. The combination of Si with 2D layered materials represents an innovative approach to construct high-performance optoelectronic devices by harnessing the complementary advantages of both materials. In this review, we summarize the recent advances in 2D layered material/Si heterojunctions and their applications in photovoltaic and optoelectronic devices. Finally, the outlook and challenges of 2D layered material/Si heterojunctions for high-performance device applications are presented.
  相似文献   

16.
Biological materials with hierarchical architectures (e.g., a macroscopic hollow structure and a microscopic cellular structure) offer unique inspiration for designing and manufacturing advanced biomimetic materials with outstanding mechanical performance and low density. Most conventional biomimetic materials only benefit from bioinspired architecture at a single length scale (e.g., microscopic material structure), which largely limits the mechanical performance of the resulting materials. There exists great potential to maxime the mechanical performance of biomimetic materials by leveraging a bioinspired hierarchical structure. An ink‐based three‐dimensional (3D) printing strategy to manufacture an ultralight biomimetic hierarchical graphene material (BHGMs) with exceptionally high stiffness and resilience is demonstrated. By simultaneously engineering 3D‐printed macroscopic hollow structures and constructing an ice‐crystal‐induced cellular microstructure, BHGMs can achieve ultrahigh elasticity and stability at compressive strains up to 95%. Multiscale finite element analyses indicate that the hierarchical structures of BHGMs effectively reduce the macroscopic strain and transform the microscopic compressive deformation into the rotation and bending of the interconnected graphene flakes. This 3D printing strategy demonstrates the great potential that exists for the assembly of other functional materials into hierarchical cellular structures for various applications where high stiffness and resilience at low density are simultaneously required.  相似文献   

17.
Research on wearable electronic devices that can be directly integrated into daily textiles or clothes has been explosively grown holding great potential for various practical wearable applications. These wearable electronic devices strongly demand 1D electronic devices that are light–weight, weavable, highly flexible, stretchable, and adaptable to comport to frequent deformations during usage in daily life. To this end, the development of 1D electrodes with high stretchability and electrical performance is fundamentally essential. Herein, the recent process of 1D stretchable electrodes for wearable and textile electronics is described, focusing on representative conductive materials, fabrication techniques for 1D stretchable electrodes with high performance, and designs and applications of various 1D stretchable electronic devices. To conclude, discussions are presented regarding limitations and perspectives of current materials and devices in terms of performance and scientific understanding that should be considered for further advances.  相似文献   

18.
Nanoscience and nanotechnology offer great opportunities and challenges in both fundamental research and practical applications, which require precise control of building blocks with micro/nanoscale resolution in both individual and mass‐production ways. The recent and intensive nanotechnology development gives birth to a new focus on nanomembrane materials, which are defined as structures with thickness limited to about one to several hundred nanometers and with much larger (typically at least two orders of magnitude larger, or even macroscopic scale) lateral dimensions. Nanomembranes can be readily processed in an accurate manner and integrated into functional devices and systems. In this Review, a nanotechnology perspective of nanomembranes is provided, with examples of science and applications in semiconductor, metal, insulator, polymer, and composite materials. Assisted assembly of nanomembranes leads to wrinkled/buckled geometries for flexible electronics and stacked structures for applications in photonics and thermoelectrics. Inspired by kirigami/origami, self‐assembled 3D structures are constructed via strain engineering. Many advanced materials have begun to be explored in the format of nanomembranes and extend to biomimetic and 2D materials for various applications. Nanomembranes, as a new type of nanomaterials, allow nanotechnology in a controllable and precise way for practical applications and promise great potential for future nanorelated products.  相似文献   

19.
20.
Considerable progress in materials development and device integration for mechanically bendable and stretchable optoelectronics will broaden the application of “Internet‐of‐Things” concepts to a myriad of new applications. When addressing the needs associated with the human body, such as the detection of mechanical functions, monitoring of health parameters, and integration with human tissues, optoelectronic devices, interconnects/circuits enabling their functions, and the core passive components from which the whole system is built must sustain different degrees of mechanical stresses. Herein, the basic characteristics and performance of several of these devices are reported, particularly focusing on the conducting element constituting them. Among these devices, strain sensors of different types, energy storage elements, and power/energy storage and generators are included. Specifically, the advances during the past 3 years are reported, wherein mechanically flexible conducting elements are fabricated from (0D, 1D, and 2D) conducting nanomaterials from metals (e.g., Au nanoparticles, Ag flakes, Cu nanowires), carbon nanotubes/nanofibers, 2D conductors (e.g., graphene, MoS2), metal oxides (e.g., Zn nanorods), and conducting polymers (e.g., poly(3,4‐ethylenedioxythiophene):poly(4‐styrene sulfonate), polyaniline) in combination with passive fibrotic and elastomeric materials enabling, after integration, the so‐called electronic skins and electronic textiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号