首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Fabrication of nanostructured graphene (Gr) for gas sensing applications has become increasingly attractive. For the first time, 3D graphene flowers (GF) cluster patterns are grown directly on an Ni foam substrate by inexpensive homebuilt microwave plasma‐enhanced chemical vapor deposition (MPCVD) using the gas mixture H2/C2H4O2@Ar as a precursor. The interim morphologies of the synthesized GF are investigated and the growth mechanism of the GF film is proposed. The GF are decomposed to few‐layer Gr sheets by ultrasonication in ethanol. For the first time, MPCVD‐synthesized Gr is exploited to fabricate a gas sensor that exhibits an ultrahigh sensitivity of 133.2 ppm?1 to NO2. Outstanding sensor responses of 1411% and 101% to 10 ppm and 200 ppb NO2, respectively, are achieved. Furthermore, a low theoretical detection limit of 785 ppt NO2 is achieved. An ultrafast (within 2 s) recovery is observed at room temperature, and an imbedded microheater is employed to improve the selectivity of NO2 detection relative to humidity. This work represents a simple, clean, and efficient route to synthesize large‐area cauliflower Gr for gas detection with high performance, including ultrahigh sensitivity, good selectivity, fast recovery, and reversibility.  相似文献   

2.
Improving the lifetime and the operational and thermal stability of organic thin‐film materials while maintaining high conductivity and mechanical flexibility is critical for flexible electronics applications. Here, it is reported that highly conductive and environmentally stable organic transparent electrodes (TEs) can be fabricated by mechanically laminating poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) films containing dimethylsulfoxide and Zonyl fluorosurfactant (PDZ films) with a monolayer graphene barrier. The proposed lamination process allows graphene to be coated onto the PDZ films uniformly and conformally with tight interfacial binding, free of wrinkles and air gaps. The laminated films exhibit an outstanding room‐temperature hole mobility of ≈85.1 cm2 V?1 s?1 since the graphene can serve as an effective bypass for charge carriers. The significantly improved stability of the graphene‐laminated TEs against high mechanical/thermal stress, humidity, and ultraviolet irradiation is particularly promising. Furthermore, the incorporation of the graphene barrier increases the expected lifetime of the TEs by more than two orders of magnitude.  相似文献   

3.
Carbon‐based electronic devices are suitable candidates for bioinspired electronics due to their low cost, eco‐friendliness, mechanical flexibility, and compatibility with complementary metal‐oxide‐semiconductor technology. New types of materials such as graphene quantum dots (GQDs) have attracted attention in the search for new applications beyond solar cells and energy harvesting due to their superior properties such as elevated photoluminescence, high chemical inertness, and excellent biocompatibility. In this paper, a biocompatible/organic electronic synapse based on nitrogen‐doped graphene oxide quantum dots (N‐GOQDs) is reported, which exhibits threshold resistive switching via silver cation (Ag+) migration dynamics. In analogy to the calcium (Ca2+) ion dynamics of biological synapses, important biological synapse functions such as short‐term potentiation (STP), paired‐pulse facilitation, and transition from STP to long‐term plasticity behaviors are replicated. Long‐term depression behavior is also evaluated and specific spike‐timing dependent plasticity is assessed. In addition, elaborated switching mechanism of biosimilar Ag+ migration dynamics provides the potential for using N‐GOQD‐based artificial synapse in future biocompatible neuromorphic systems.  相似文献   

4.
The conformation of calmodulin (CaM) changes from closed configuration to open one, converting to a claviform dumbbell‐shaped biomolecule upon Ca2+‐binding. A hybrid probe of graphene oxide (GO) cationic conjugated polymer for detection of the conformation transition of CaM by using FRET technique is demonstrated. The stronger hydrophobic interaction and weaker electrostatic repulsion leads to more CaM adsorption to the surface of GO upon binding with Ca2+ than that of CaM in the absence of Ca2+ (apoCaM), resulting in much farther proximity between poly[(9,9‐bis(6′‐N,N,N‐trimethy­lammonium)hexyl)‐fluorenylene phenylene dibromide] (PFP) and green fluorescent protein labeled at the N‐terminus of CaM and therefore much weaker FRET efficiency for PFP/Ca2+/CaM in comparison with that of PFP/apoCaM in the presence of GO. Notably, the assembly of CaM with GO is quantitatively and reversibly controlled by Ca2+ ions.  相似文献   

5.
Electroaddressing of biological components at specific device addresses is attractive because it enlists the capabilities of electronics to provide spatiotemporally controlled electrical signals. Here, the electrodeposition of calcium alginate hydrogels at specific electrode addresses is reported. The method employs the low pH generated at the anode to locally solubilize calcium ions from insoluble calcium carbonate. The solubilized Ca2+ can then bind alginate to induce this polysaccharide to undergo a localized sol‐gel transition. Calcium alginate gel formation is shown to be spatially controlled in the normal and lateral dimensions. The deposition method is sufficiently benign that it can be used to entrap the bacteria E. coli. The entrapped cells are able to grow and respond to chemical inducers in their environment. Also, the entrapped cells can be liberated from the gel network by adding sodium citrate that can compete with alginate for Ca2+ binding. The capabilities of calcium alginate electrodeposition is illustrated by entrapping reporter cells that can recognize the quorum sensing autoinducer 2 (AI‐2) signaling molecule. These reporter cells were observed to recognize and respond to AI‐2 generated from an external bacterial population. Thus, calcium alginate electrodeposition provides a programmable method for the spatiotemporally controllable assembly of cell populations for cell‐based biosensing and for studying cell‐cell signaling.  相似文献   

6.
Despite the tremendous advancement of intelligent robots, it remains a great challenge to integrate living organisms‐like multistimuli responsive actuation and excellent self‐healing ability into one single material system, which will greatly benefit and broaden the development of smart biomimetic materials. Herein, a novel self‐healable multistimuli responsive actuator is developed based on hierarchical structural design and interfacial supramolecular crosslinking. The resulting biomimetic actuator shows a record high photothermal efficiency (ηPT = 79.1%) and thermal conductivity (31.92 W m?1 K?1), and presents a superfast actuating response (near‐infrared light: 0.44 s; magnetic field: 0.36 s). In addition, the supramolecular crosslinking endows excellent self‐healing performance in both mechanical and actuating properties to the material. This biomimetic actuator with its hierarchical structure design provides great potential for various applications, such as artificial muscles, soft robotics, and biomedical microdevices.  相似文献   

7.
Reduced graphene oxide (RGO) films are promising in applications ranging from electronics to flexible sensors. Though high electrical and thermal conductivities have been reported for RGO films, existing thermal conductivity data for RGO films show large variations from 30 to 2600 W m?1 K?1. Further, there is a lack of data at low temperatures (<300 K), which is critical for the understanding of thermal transport mechanisms. In this work, a temperature‐dependent study of thermal (10–300 K) and electrical (10–3000 K) transport in annealed RGO films indicates the potential application of RGO films for sensing temperatures across an extremely wide range. The room‐temperature thermal conductivity increases significantly from 46.1 to 118.7 W m?1 K?1 with increasing annealing temperature from 1000 to 3000 K with a corresponding increase in the electrical conductivity from 5.2 to 1481.0 S cm?1. In addition, films reduced at 3000 K are promising for sensing extreme temperatures as demonstrated through the measured electrical resistivity from 10 to 3000 K. Sensors based on RGO films are advantageous over conventional temperature sensors due to the wide temperature range and flexibility. Thus, this material is useful in many applications including flexible electronics and thermal management systems.  相似文献   

8.
This paper describes the gelation of highly concentrated graphene/polymer dispersions triggered by mild heating. The gel formation is only dependent on the concentration of graphene with 3.25 mg mL?1 as the minimum value for graphene network formation. The graphene gel is then utilized for the preparation of colloidally stable and highly concentrated (52 mg mL?1) graphene pastes that demonstrate excellent performance in screen printing down to lines of 40 μm in width. Printed patterns dried at 100 °C for only 5 min exhibit sheet resistances of 30 Ω ?1 at 25 μm thickness, thus, removing the need for long‐time high temperature annealing, doping, or other treatments. Such a low drying temperature, high printing definition, and compatibility with industrially relevant plastic and paper substrates brings high‐volume roll‐to‐roll application in printed flexible electronics within reach.  相似文献   

9.
Humidity‐driven and electrically responsive graphene/cloisite hybrid films are obtained by casting water dispersions of graphene oxide and cloisite Na+. Coupling hydrophilicity and a high water vapor barrier in a homogenous film enables to realize humidity‐driven actuators which exploit the water gradient generated across the film section under asymmetric exposure to humidity. The hybrid films are self‐standing, flexible, and exhibit fast humidity‐triggered bidirectional bending up to 75°, which is tuned by varying the relative amount of the two components. Up to 60% of the bending angle can be preserved at the steady state, providing a large and reliable response to humidity. Moreover, thermal treatment results in the reduction of graphene oxide, endowing the films with humidity‐dependent electrical conductivity, which increases from 1.5 × 10?6 S at 20% relative humidity (RH) up to 2.7 × 10?5 S at 90% RH. The films are used to realize a humidity‐sensitive electrical switching system in which the reversible actuation is due to water desorption induced by the Joule effect. Due to their ease of preparation and tunable properties, this new class of graphene‐based materials is suitable for the realization of humidity‐driven and electrically responsive actuators and sensors.  相似文献   

10.
Highly sensitive and selective chemiresistive sensors based on graphene functionalized by metals and metal oxides have attracted considerable attention in the fields of environmental monitoring and medical assessment because of their ultrasensitive gas detecting performance and cost‐effective fabrication. However, their operation, in terms of detection limit and reliability, is limited in traditional applications because of ambient humidity. Here, the enhanced sensitivity and selectivity of single‐stranded DNA‐functionalized graphene (ssDNA‐FG) sensors to NH3 and H2S vapors at high humidity are demonstrated and their sensing mechanism is suggested. It is found that depositing a layer of ssDNA molecules leads to effective modulation of carrier density in graphene, as a negative‐potential gating agent and the formation of an additional ion conduction path for proton hopping in the layer of hydronium ions (H3O+) at high humidity (>80%). Considering that selectively responsive chemical vapors are biomarkers associated with human diseases, the obtained results strongly suggest that ssDNA‐FG sensors can be the key to developing a high‐performance exhaled breath analyzer for diagnosing halitosis and kidney disorder.  相似文献   

11.
Integration of 2D membranes into 3D macroscopic structures is essential to overcome the intrinsically low stretchability of graphene for the applications in flexible and wearable electronics. Herein, the synthesis of 3D graphene films (3D‐GFs) using chemical vapor deposition (CVD) is reported, in which a porous copper foil (PCF) is chosen as a template in the atmospheric‐pressure CVD preparation. When the 3D‐GF prepared at 1000 °C (noted as 3D‐GF‐1000) is transferred onto a polydimethylsiloxane (PDMS) membrane, the obtained 3D‐GF‐1000/PDMS hybrid film shows an electrical conductivity of 11.6 S cm?1 with good flexibility, indicated by small relative resistance changes (ΔR/R0) of 2.67 and 0.36 under a tensile strain of 50% and a bending radius of 1.6 mm, respectively. When the CVD temperature is reduced to 900 °C (generating a sample noted as 3D‐GF‐900), the 3D‐GF‐900/PDMS hybrid film exhibits an excellent strain‐sensing performance with a workable strain range of up to 187% and simultaneously a gauge factor of up to ≈1500. The 3D‐GF‐900/PDMS also shows a remarkable durability in resistance in repeated 5000 stretching‐releasing cycles. Kinetics studies show that the response of ΔR/R0 upon strain is related to the graphitization and conductivity of 3D‐GF which are sensitive to the CVD preparation temperature.  相似文献   

12.
Flexible chemical sensors utilizing chemically sensitive nanomaterials are of great interest for wearable sensing applications. However, obtaining high performance flexible chemical sensors with high sensitivity, fast response, transparency, stability, and workability at ambient conditions is still challenging. Herein, a newly designed flexible and transparent chemical sensor of reduced graphene oxide (R‐GO) coupled with organic dye molecules (bromophenol blue) is introduced. This device has promising properties such as high mechanical flexibility (>5000 bending cycles with a bending radius of 0.95 cm) and optical transparency (>60% in the visible region). Furthermore, stacking the water‐trapping dye layer on R‐GO enables a higher response as well as workability in a large relative humidity range (up to 80%), and dual‐mode detection capabilities of colorimetric and electrical sensing for NH3 gas (5–40 ppm). These advantageous attributes of the flexible and transparent R‐GO sensor coupled with organic dye molecules provide great potential for real‐time monitoring of toxic gas/vapor in future practical chemical sensing at room conditions in wearable electronics.  相似文献   

13.
Wound healing is affected by bacterial infection and related inflammation, cell proliferation and differentiation, and tissue remodeling. Current antibiotics therapy cannot promote wound healing and kill bacteria at the same time. Herein, hybrid nanosheets of g‐C3N4‐Zn2+@graphene oxide (SCN‐Zn2+@GO) are prepared by combining Zn2+ doped sheet‐like g‐C3N4 with graphene oxide via electrostatic bonding and π–π stacking interactions to assist wound healing and kill bacteria simultaneously by short‐time exposure to 660 and 808 nm light. The gene expressions of matrix metalloproteinase‐2, type I collagen, type III collagen, and interleukin β in fibroblasts are regulated by GO and released Zn2+, which can accelerate wound healing. Co‐irradiation produces an antibacterial ratio over 99.1% within a short time because of the synergistic effects of both photodynamic antibacterial and photothermal antibacterial treatments. The hyperthermia produced by 808 nm light illumination can weaken the bacterial activity. And these bacteria can be easily killed by membrane destruction, protein denaturation, and disruption of bacterial metabolic pathways due to reactive oxygen species produced under 660 nm light irradiation. This strategy of Zn2+ and GO modification can increase the antibacterial efficacy of SCN and accelerate wound healing at the same time, which makes this SCN‐Zn2+@GO be very promising in bacteria‐infected wound healing therapy.  相似文献   

14.
Bismuth iron garnet Bi3Fe5O12 (BIG) is a multifunctional insulating oxide exhibiting remarkably the largest known Faraday rotation and linear magnetoelectric coupling. Enhancing the electrical conductivity in BIG while preserving its magnetic properties would further widen its range of potential applications in oxitronic devices. Here, a site‐selective codoping strategy in which Ca2+ and Y3+ substitute for Bi3+ is applied. The resulting p‐ and n‐type doped BIG films combine state‐of‐the‐art magneto‐optical properties and semiconducting behaviors above room temperature with rather low resistivity: 40 Ω cm at 450 K is achieved in an n‐type Y‐doped BIG; this is ten orders of magnitude lower than that of Y3Fe5O12. High‐resolution electron spectromicroscopy unveils the complete dopant solubility and the charge compensation mechanisms at the local scale in p‐ and n‐type systems. Oxygen vacancies as intrinsic donors play a key role in the conduction mechanisms of these doped BIG films. On the other hand, a self‐compensation of Ca2+ with oxygen vacancies tends to limit the conduction in p‐type Ca/Y‐doped BIG. These results highlight the possibility of integrating n‐type and p‐type doped BIG films in spintronic structures as well as their potential use in gas sensing applications.  相似文献   

15.
Bioresorbable electronic devices are promising replacements for conventional build‐to‐last electronics in implantable biomedical systems and consumer electronics. However, bioresorbable devices are typically achieved by complex complementary metal oxide semiconductor fabrication processes that minimize exposure to humidity. Emerging printable techniques for bioresorbable electronics demand further improvement in electrical conductivity and mechanical robustness. This paper presents a room‐temperature spontaneous sintering method of bioresorbable inks that contain zinc nanoparticles and anhydride. The entire process can be conducted in atmosphere environment under 90% humidity within 300 min. It has minimum requirement for external heating and special ambient conditions, allowing humidity to trigger the surface chemistry of zinc nanoparticles and spontaneous welding between neighboring nanoparticles. The resulting bioresorbable patterns are highly conductive (σ = 72 400 S m?1) and mechanically robust (>1500 bending cycles) to enable practical applications. A radio circuit achieved through the above method can operate stably over 14 days in air and disappear in water for less than 30 min. The spontaneous room‐temperature sintering represents a rapid and energy‐efficient approach to achieve high‐performance bioresorbable electronics with improved mechanical robustness and electrical performance, leading to broader impacts in the areas of healthcare, information security, and consumer electronics.  相似文献   

16.
Printable and flexible electronics attract sustained attention for their low cost, easy scale up, and potential application in wearable and implantable sensors. However, they are susceptible to scratching, rupture, or other damage from bending or stretching due to their “soft” nature compared to their rigid counterparts (Si‐based electronics), leading to loss of functionality. Self‐healing capability is highly desirable for these “soft” electronic devices. Here, a versatile self‐healing polymer blend dielectric is developed with no added salts and it is integrated into organic field transistors (OFETs) as a gate insulator material. This polymer blend exhibits an unusually high thin film capacitance (1400 nF cm?2 at 120 nm thickness and 20–100 Hz). Furthermore, it shows pronounced electrical and mechanical self‐healing behavior, can serve as the gate dielectric for organic semiconductors, and can even induce healing of the conductivity of a layer coated above it together with the process of healing itself. Based on these attractive properties, we developed a self‐healable, low‐voltage operable, printed, and flexible OFET for the first time, showing promise for vapor sensing as well as conventional OFET applications.  相似文献   

17.
As a low dimensional crystal, graphene attracts great attention as heat dissipation material due to its unique thermal transfer property exceeding the limit of bulk graphite. In this contribution, flexible graphene–carbon fiber composite paper is fabricated by depositing graphene oxide into the carbon fiber precursor followed by carbonization. In this full‐carbon architecture, scaffold of one‐dimensional carbon fiber is employed as the structural component to reinforce the mechanical strength, while the hierarchically arranged two‐dimensional graphene in the framework provides a convenient pathway for in‐plane acoustic phonon transmission. The as‐obtained hierarchical carbon/carbon composite paper possesses ultra‐high in‐plane thermal conductivity of 977 W m?1 K?1 and favorable tensile strength of 15.3 MPa. The combined mechanical and thermal performances make the material highly desirable as lateral heat spreader for next‐generation commercial portable electronics.  相似文献   

18.
Novel nacre‐mimic bio‐nanocomposites, such as graphene‐based laminates, are pushing the boundaries of strength and toughness as flexible engineering materials. Translating these material advances to functional flexible electronics requires methods for generating print‐scalable microcircuits (conductive elements surrounded by dielectric) into these strong, tough, lightweight bio‐nanocomposites. Here, a new paradigm for printing flexible electronics by employing facile, eco‐friendly seriography to confine the reduction of graphene oxide biopapers reinforced by silk interlayers is presented. Well‐defined, micropatterned regions on the biopaper are chemically reduced, generating a 106 increase in conductivity (up to 104 S m?1). Flexible, robust graphene‐silk circuits are showcased in diverse applications such as resistive moisture sensors and capacitive proximity sensors. Unlike conductive (i.e., graphene‐ or Ag nanoparticle‐loaded) inks printed onto substrates, seriography‐guided reduction does not create mechanically weak interfaces between dissimilar materials and does not require the judicious formation of ink. The unimpaired functionality of printed‐in graphene‐silk microcircuits after thousands of punitive folding cycles and chemical attack by harsh solvents is demonstrated. This novel approach provides a low‐cost, portable solution for printing micrometer‐scale conductive features uniformly across large areas (>hundreds of cm2) in layered composites for applications including wearable health monitors, electronic skin, rollable antennas, and conformable displays.  相似文献   

19.
In spite of recent successful demonstrations of flexible and transparent graphene heaters, the underlying heat‐transfer mechanism is not understood due to the complexity of the heating system. Here, graphene/glass defoggers are fabricated and the dynamic response of the temperature as a function of input electrical power is measured. The graphene/glass defoggers reveal shorter response times than Cr/glass defoggers. Furthermore, the saturated temperature of the graphene/glass defoggers is higher than for Cr/glass defoggers at a given input electrical power. The observed dynamic response to temperature is well‐fitted to the power‐balance model. The response time of graphene/glass defogger is shorter by 44% than that of the Cr/glass defogger. The convective heat‐transfer coefficient of graphene is 12.4 × 10?4 W cm?2 °C?1, similar to that of glass (11.1 × 10?4 W cm?2 °C?1) but smaller than that of chromium (17.1 × 10?4 W cm?2 °C?1). The graphene‐based system reveals the lowest convective heat‐transfer coefficient due to its ideal flat surface compared to its counterparts of carbon nanotubes (CNTs) and reduced graphene oxide (RGO)‐based systems.  相似文献   

20.
As an analogue of the main protein contained in naturally formed nacre, reconstituted silk fibroin (SF) from the Bombyx mori silkworm silk shows a strong preference for the formation of the aragonite form of CaCO3 crystals and allows fine control over their size and morphology. The aragonite phase could be generated via two different routes: direct growth or dissolution and recrystallization, depending on the concentration of Ca2+ and SF. Generally, lower concentrations of Ca2+ and SF favor the formation of aragonite needles and their aggregates, of which the lattice structure of the precursor is similar to that of the organic matrix in natural shell. Higher concentrations lead to the formation of aragonite aggregates via a dissolution and recrystallization process through intermediates of lens‐like vaterite. Molecular modeling shows that the β‐strand conformers of silk fibroin molecules has an excellent match with the ionic spacing in the aragonite (010) plane, which can promote growth along the (001) long axis of aragonite crystals. This synergy between silk fibroin and the aragonite phase may help our understanding of the function of organic matrices involved in the biomineralization process, and facilitate the fabrication of synthetic materials with the potential for high performance mechanical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号