首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2D transition metal dichalcogenides materials are explored as potential surface‐enhanced Raman spectroscopy substrates. Herein, a systematic study of the Raman enhancement mechanism on distorted 1T (1T′) rhenium disulfide (ReS2) nanosheets is demonstrated. Combined Raman and photoluminescence studies with the introduction of an Al2O3 dielectric layer unambiguously reveal that Raman enhancement on ReS2 materials is from a charge transfer process rather than from an energy transfer process, and Raman enhancement is inversely proportional while the photoluminescence quenching effect is proportional to the layer number (thickness) of ReS2 nanosheets. On monolayer ReS2 film, a strong resonance‐enhanced Raman scattering effect dependent on the laser excitation energy is detected, and a detection limit as low as 10?9m can be reached from the studied dye molecules such as rhodamine 6G and methylene blue. Such a high enhancement factor achieved through enhanced charge interaction between target molecule and substrate suggests that with careful consideration of the layer‐number‐dependent feature and excitation‐energy‐related resonance effect, ReS2 is a promising Raman enhancement platform for sensing applications.  相似文献   

2.
A novel droplet‐based surface‐enhanced Raman scattering (SERS) sensor for high‐throughput real‐time SERS monitoring is presented. The developed sensors are based on a droplet‐guiding‐track‐engraved superhydrophobic substrate covered with hierarchical SERS‐active Ag dendrites. The droplet‐guiding track with a droplet stopper is designed to manipulate the movement of a droplet on the superhydrophobic substrate. The superhydrophobic Ag dendritic substrates are fabricated through a galvanic displacement reaction and subsequent self‐assembled monolayer coating. The optimal galvanic reaction time to fabricate a SERS‐active Ag dendritic substrate for effective SERS detection is determined, with the optimized substrate exhibiting an enhancement factor of 6.3 × 105. The height of the droplet stopper is optimized to control droplet motion, including moving and stopping. Based on the manipulation of individual droplets, the optimized droplet‐based real‐time SERS sensor shows high resistance to surface contaminants, and droplets containing rhodamine 6G, Nile blue A, and malachite green are successively controlled and detected without spectral interference. This noble droplet‐based SERS sensor reduces sample preparation time to a few seconds and increased detection rate to 0.5 µ L s?1 through the simple operation mechanism of the sensor. Accordingly, our sensor enables high‐throughput real‐time molecular detection of various target analytes for real‐time chemical and biological monitoring.  相似文献   

3.
Metal oxides have advantages over the traditional noble metals to be used as substrate materials for surface‐enhanced Raman spectroscopy (SERS) with low cost, versatility, and biocompatibility, but their enhancement factors are generally quite low with a poor limit of detection. Here, ultrathin molybdenum dioxide (MoO2) nanosheets synthesized by chemical vapor deposition demonstrated in large area are used as SERS substrates with superior signal uniformity in the whole area with a limit of detectable concentration down to 4 × 10?8m and enhancement factor up to 2.1 × 105, exceeding that of 2D materials and comparable to that of noble metal films. More practically important, the planar MoO2 substrate is more robust than noble metals and shows excellent reusability and uniformity, which is usually prohibited for nanostructured or nanoparticle‐based metal oxide substrates. The enhancement is mainly attributed to the surface plasmon resonance effect as evidenced by the first principle calculations and UV–vis absorption spectroscopy characterization, which can be further increased by decreasing the thickness of the MoO2 nanosheets. The overall superior performance makes the MoO2 nanosheets an ideal substrate for practical SERS applications.  相似文献   

4.
Fabricating perfect plasmonic nanostructures has been a major challenge in surface enhanced Raman scattering (SERS) research. Here, a double‐layer stacked Au/Al2O3@Au nanosphere structures is designed on the silicon wafer to bring high density, high intensity “hot spots” effect. A simply reproducible high‐throughput approach is shown to fabricate feasibly this plasmonic nanostructures by rapid thermal annealing (RTA) and atomic layer deposition process (ALD). The double‐layer stacked Au nanospheres construct a three‐dimensional plasmonic nanostructure with tunable nanospacing and high‐density nanojunctions between adjacent Au nanospheres by ultrathin Al2O3 isolation layer, producing highly strong plasmonic coupling so that the electromagnetic near‐field is greatly enhanced to obtain a highly uniform increase of SERS with an enhancement factor (EF) of over 107. Both heterogeneous nanosphere group (Au/Al2O3@Ag) and pyramid‐shaped arrays structure substrate can help to increase the SERS signals further, with a EF of nearly 109. These wafer‐scale, high density homo/hetero‐metal‐nanosphere arrays with tunable nanojunction between adjacent shell‐isolated nanospheres have significant implications for ultrasensitive Raman detection, molecular electronics, and nanophotonics.  相似文献   

5.
The cost‐effective self‐assembly of 80 nm Au nanoparticles (NPs) into large‐domain, hexagonally close‐packed arrays for high‐sensitivity and high‐fidelity surface‐enhanced Raman spectroscopy (SERS) is demonstrated. These arrays exhibit specific optical resonances due to strong interparticle coupling, which are well reproduced by finite‐difference time‐domain (FDTD) simulations. The gaps between NPs form a regular lattice of hot spots that enable a large amplification of both photoluminescence and Raman signals. At smaller wavelengths the hot spots are extended away from the minimum‐gap positions, which allows SERS of larger analytes that do not fit into small gaps. Using CdSe quantum dots (QDs) a 3–5 times larger photoluminescence enhancement than previously reported is experimentally demonstrated and an unambiguous estimate of the electromagnetic SERS enhancement factor of ≈104 is obtained by direct scanning electron microscopy imaging of QDs responsible for the Raman signal. Much stronger enhancement of ≈108 is obtained at larger wavelengths for benzenethiol molecules penetrating the NP gaps.  相似文献   

6.
Nanostructured titanium dioxide (TiO2) electrodes, prepared by anodization of titanium, are employed to probe the electron‐transfer process of cytochrome b5 (cyt b5) by surface‐enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2, achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b5 is immobilized on TiO2 under preservation of its native structure but it displays a non‐ideal redox behavior due to the limited conductivity of the electrode material. The electron‐transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry.  相似文献   

7.
Perovskite solar cells with all‐organic transport layers exhibit efficiencies rivaling their counterparts that employ inorganic transport layers, while avoiding high‐temperature processing. Herein, it is investigated how the choice of the fullerene derivative employed in the electron‐transporting layer of inverted perovskite cells affects the open‐circuit voltage (VOC). It is shown that nonradiative recombination mediated by the electron‐transporting layer is the limiting factor for the VOC in the cells. By inserting an ultrathin layer of an insulating polymer between the active CH3NH3PbI3 perovskite and the fullerene, an external radiative efficiency of up to 0.3%, a VOC as high as 1.16 V, and a power conversion efficiency of 19.4% are realized. The results show that the reduction of nonradiative recombination due to charge‐blocking at the perovskite/organic interface is more important than proper level alignment in the search for ideal selective contacts toward high VOC and efficiency.  相似文献   

8.
The quality of perovskite films is critical to the performance of perovskite solar cells. However, it is challenging to control the crystallinity and orientation of solution‐processed perovskite films. Here, solution‐phase van der Waals epitaxy growth of MAPbI3 perovskite films on MoS2 flakes is reported. Under transmission electron microscopy, in‐plane coupling between the perovskite and the MoS2 crystal lattices is observed, leading to perovskite films with larger grain size, lower trap density, and preferential growth orientation along (110) normal to the MoS2 surface. In perovskite solar cells, when perovskite active layers are grown on MoS2 flakes coated on hole‐transport layers, the power conversion efficiency is substantially enhanced for 15%, relatively, due to the increased crystallinity of the perovskite layer and the improved hole extraction and transfer rate at the interface. This work paves a way for preparing high‐performance perovskite solar cells and other optoelectronic devices by introducing 2D materials as interfacial layers.  相似文献   

9.
The assembly of plasmonic metal nanoparticles into hot spot surface‐enhanced Raman scattering (SERS) nanocluster probes is a powerful, yet challenging approach for ultrasensitive biosensing. Scaffolding strategies based on self‐complementary peptides and proteins are of increasing interest for these assemblies, but the electronic and the photonic properties of such hybrid nanoclusters remain difficult to predict and optimize. Here, split‐green fluorescence protein (sGFP) fragments are used as molecular glue and the GFP chromophore is used as a Raman reporter to assemble a variety of gold nanoparticle (AuNP) clusters and explore their plasmonic properties by numerical modeling. It is shown that GFP seeding of plasmonic nanogaps in AuNP/GFP hybrid nanoclusters increases near‐field dipolar couplings between AuNPs and provides SERS enhancement factors above 108. Among the different nanoclusters studied, AuNP/GFP chains allow near‐infrared SERS detection of the GFP chromophore imidazolinone/exocyclic C?C vibrational mode with theoretical enhancement factors of 108–109. For larger AuNP/GFP assemblies, the presence of non‐GFP seeded nanogaps between tightly packed nanoparticles reduces near‐field enhancements at Raman active hot spots, indicating that excessive clustering can decrease SERS amplifications. This study provides rationales to optimize the controlled assembly of hot spot SERS nanoprobes for remote biosensing using Raman reporters that act as molecular glue between plasmonic nanoparticles.  相似文献   

10.
Surface‐enhanced Raman spectroscopy (SERS) based on plasmonic semiconductive material has been proved to be an efficient tool to detect trace of substances, while the relatively weak plasmon resonance compared with noble metal materials restricts its practical application. Herein, for the first time a facile method to fabricate amorphous HxMoO3 quantum dots with tunable plasmon resonance is developed by a controlled oxidization route. The as‐prepared amorphous HxMoO3 quantum dots show tunable plasmon resonance in the region of visible and near‐infrared light. Moreover, the tunability induced by SC CO2 is analyzed by a molecule kinetic theory combined with a molecular thermodynamic model. More importantly, the ultrahigh enhancement factor of amorphous HxMoO3 quantum dots detecting on methyl blue can be up to 9.5 × 105 with expending the limit of detection to 10?9 m . Such a remarkable porperty can also be found in this HxMoO3‐based sensor with Rh6G and RhB as probe molecules, suggesting that the amorphous HxMoO3 quantum dot is an efficient candidate for SERS on molecule detection in high precision.  相似文献   

11.
All‐inorganic perovskites have high carrier mobility, long carrier diffusion length, excellent visible light absorption, and well overlapping with localized surface plasmon resonance (LSPR) of noble metal nanocrystals (NCs). The high‐performance photodetectors can be constructed by means of the intrinsic outstanding photoelectric properties, especially plasma coupling. Here, for the first time, inorganic perovskite photodetectors are demonstrated with synergetic effect of preferred‐orientation film and plasmonic with both high performance and solution process virtues, evidenced by 238% plasmonic enhancement factor and 106 on/off ratio. The CsPbBr3 and Au NC inks are assembled into high‐quality films by centrifugal‐casting and spin‐coating, respectively, which lead to the low cost and solution‐processed photodetectors. The remarkable near‐field enhancement effect induced by the coupling between Au LSPR and CsPbBr3 photogenerated carriers is revealed by finite‐difference time‐domain simulations. The photodetector exhibits a light on/off ratio of more than 106 under 532 nm laser illumination of 4.65 mW cm?2. The photocurrent increases from 0.67 to 2.77 μA with centrifugal‐casting. Moreover, the photocurrent rises from 245.6 to 831.1 μA with Au NCs plasma enhancement, leading to an enhancement factor of 238%, which is the most optimal report among the LSPR‐enhanced photodetectors, to the best of our knowledge. The results of this study suggest that all‐inorganic perovskites are promising semiconductors for high‐performance solution‐processed photodetectors, which can be further enhanced by Au plasmonic effect, and hence have huge potentials in optical communication, safety monitoring, and biological sensing.  相似文献   

12.
Controllable and efficient synthesis of noble metal/transition‐metal oxide (TMO) composites with tailored nanostructures and precise components is essential for their application. Herein, a general mercaptosilane‐assisted one‐pot coassembly approach is developed to synthesize ordered mesoporous TMOs with agglomerated‐free noble metal nanoparticles, including Au/WO3, Au/TiO2, Au/NbOx, and Pt/WO3. 3‐mercaptopropyl trimethoxysilane is applied as a bridge agent to cohydrolyze with metal oxide precursors by alkoxysilane moieties and interact with the noble metal source (e.g., HAuCl4 and H2PtCl4) by mercapto (? SH) groups, resulting in coassembly with poly(ethylene oxide)‐b‐polystyrene. The noble metal decorated TMO materials exhibit highly ordered mesoporous structure, large pore size (≈14–20 nm), high specific surface area (61–138 m2 g?1), and highly dispersed noble metal (e.g., Au and Pt) nanoparticles. In the system of Au/WO3, in situ generated SiO2 incorporation not only enhances their thermal stability but also induces the formation of ε‐phase WO3 promoting gas sensing performance. Owning to its specific compositions and structure, the gas sensor based on Au/WO3 materials possess enhanced ethanol sensing performance with a good response (Rair/Rgas = 36–50 ppm of ethanol), high selectivity, and excellent low‐concentration detection capability (down to 50 ppb) at low working temperature (200 °C).  相似文献   

13.
Quasi‐1D cadmium chalcogenide quantum rods (QRs) are benchmark semiconductor materials that are combined with noble metals to constitute QR heterostructures for efficient photocatalysis. However, the high toxicity of cadmium and cost of noble metals are the main obstacles to their widespread use. Herein, a facile colloidal synthetic approach is reported that leads to the spontaneous formation of cadmium‐free alloyed ZnSxSe1?x QRs from polydisperse ZnSe nanowires by alkylthiol etching. The obtained non‐noble‐metal ZnSxSe1?x QRs can not only be directly adopted as efficient photocatalysts for water oxidation, showing a striking oxygen evolution capability of 3000 µmol g?1 h?1, but also be utilized to prepare QR‐sensitized TiO2 photoanodes which present enhanced photo‐electrochemical (PEC) activity. Density functional theory (DFT) simulations reveal that alloyed ZnSxSe1?x QRs have highly active Zn sites on the (100) surface and reduced energy barrier for oxygen evolution, which in turn, are beneficial to their outstanding photocatalytic and PEC activities.  相似文献   

14.
It is a significant challenge to achieve controllable self‐assembly of superstructures for biological applications in living cells. Here, a two‐layer core–satellite assembly is driven by a Y‐DNA, which is designed with three nucleotide chains that hybridized through complementary sequences. The two‐layer core–satellite nanostructure (C30S5S10 NS) is constructed using 30 nm gold nanoparticles (Au NPs) as the core, 5 nm Au NPs as the first satellite layer, and 10 nm Au NPs as the second satellite layer, resulting in a very strong circular dichroism (CD) and surface‐enhanced Raman scattering. After optimization, the yield is up to 85%, and produces a g‐factor of 0.16 × 10?2. The hybridization of the target microRNA (miRNA) with the molecular probe causes a significant drop in the CD and Raman signals, and this phenomenon is used to detect the miRNA in living cells. The CD signal has a good linear range of 0.011–20.94 amol ngRNA?1 and a limit of detection (LOD) of 0.0051 amol ngRNA?1, while Raman signal with the range of 0.052–34.98 amol ngRNA?1 and an LOD of 2.81 × 10?2 amol ngRNA?1. This innovative dual‐signal method can be used to quantify biomolecules in living cells, opening the way for ultrasensitive, highly accurate, and reliable diagnoses of clinical diseases.  相似文献   

15.
A novel magnetically responsive and surface‐enhanced Raman spectroscopy (SERS) active nanocomposite is designed and prepared by direct grafting of Au nanoparticles onto the surface of magnetic network nanostructure (MNN) with the help of a nontoxic and environmentally friendly reagent of inositol hexakisphosphate shortly named as IP6. The presence of IP6 as a stabilizer and a bridging agent could weave Fe3O4 nanoparticles (NPs) into magnetic network nanostructure, which is easily dotted with Au nanoparticles (Au NPs). It has been shown firstly that the huge Raman enhancement of Au‐MNN is reached by an external magnetic collection. Au‐MNN presenting the large surface and high detection sensitivity enables it to exhibit multifunctional applications involving sufficient adsorption of dissolved chemical species for enrichment, separation, as well as a Raman amplifier for the analysis of trace pesticide residues at femtomolar level by a portable Raman spectrometer. Therefore, such multifunctional nanocomposites can be developed as a smart and promising nanosystem that integrates SERS approach with an easy assay for concentration by an external magnet for the effective on‐site assessments of agricultural and environmental safety.  相似文献   

16.
The oxygen evolution reaction (OER) is pivotal in multiple gas‐involved energy conversion technologies, such as water splitting, rechargeable metal–air batteries, and CO2/N2 electrolysis. Emerging anion‐redox chemistry provides exciting opportunities for boosting catalytic activity, and thus mastering lattice‐oxygen activation of metal oxides and identifying the origins are crucial for the development of advanced catalysts. Here, a strategy to activate surface lattice‐oxygen sites for OER catalysis via constructing a Ruddlesden–Popper/perovskite hybrid, which is prepared by a facile one‐pot self‐assembly method, is developed. As a proof‐of‐concept, the unique hybrid catalyst (RP/P‐LSCF) consists of a dominated Ruddlesden–Popper phase LaSr3Co1.5Fe1.5O10‐δ (RP‐LSCF) and second perovskite phase La0.25Sr0.75Co0.5Fe0.5O3‐δ (P‐LSCF), displaying exceptional OER activity. The RP/P‐LSCF achieves 10 mA cm?2 at a low overpotential of only 324 mV in 0.1 m KOH, surpassing the benchmark RuO2 and various state‐of‐the‐art metal oxides ever reported for OER, while showing significantly higher activity and stability than single RP‐LSCF oxide. The high catalytic performance for RP/P‐LSCF is attributed to the strong metal–oxygen covalency and high oxygen‐ion diffusion rate resulting from the phase mixture, which likely triggers the surface lattice‐oxygen activation to participate in OER. The success of Ruddlesden–Popper/perovskite hybrid construction creates a new direction to design advanced catalysts for various energy applications.  相似文献   

17.
Hybrid metal halides containing perovskite layers have recently shown great potential for applications in solar cells and light‐emitting diodes. Such compounds exhibit quantum confinement effects leading to tunable optical and electronic properties. Thus, broadband white‐light emission has been observed from diverse metal halides and, owing to high color rendering index, high thermal stability, and low‐temperature solution processability, these materials have attracted interest for application in solid‐state lighting. However, the reported quantum yields for white photoluminescence (PLQY) remain low (i.e., in the range 0.5–9%) and no approach has shown to successfully increase the intensity of this emission. Here, it is demonstrated that the quantum efficiencies of hybrid metal halides can be greatly enhanced if they contain a polymorph of the [PbX4]2? perovskite‐type layers: the [PbX4]2? post‐perovskite‐type chains showing a PLQY of 45%. Different piperazines lead to a hybrid lead halide with either perovskite layers or post‐perovskite chains influencing strongly the presence of self‐trapped states for excitons. It is anticipated that this family of hybrid lead halide materials could enhance all the properties requiring the stabilization of trapped excitons.  相似文献   

18.
Surface modification or decoration of ultrathin MoS2 films with chemical moieties is appealing since nanointerfacing can functionalize MoS2 films with bonus potentials. In this work, a facile and effective method for microlandscaping of Au nanoparticles (NPs) on few‐layer MoS2 films is developed. This approach first employs a focused laser beam to premodify the MoS2 films to achieve active surface domains with unbound sulfur. When the activated surface is subsequently immersed in AuCl3 solution, Au NPs are found to preferentially decorate onto the modified regions. As a result, Au NPs can be selectively and locally anchored onto designated regions on the MoS2 surface. With a scanning laser beam, microlandscapes comprising of Au NPs decorated on laser‐defined micropatterns are constructed. By varying the laser power, reaction time and thickness of the MoS2 films, the size and density of the NPs can be controlled. The resulting hybrid materials are demonstrated as efficient Raman active surfaces for the detection of aromatic molecules with high sensitivity.  相似文献   

19.
Mixed‐halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution‐processed triple‐cation mixed‐halide (Cs0.06MA0.15FA0.79)Pb(Br0.4I0.6)3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar‐equivalent illumination. It is found that the illumination leads to localized surface sites of iodide‐rich perovskite intermixed with passivating PbI2 material. Time‐ and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide‐rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed‐halide mixed‐cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.  相似文献   

20.
Single‐ and few‐layer transition‐metal dichalcogenide nanosheets, such as WSe2, TaS2, and TaSe2, are prepared by mechanical exfoliation. A Raman microscope is employed to characterize the single‐layer (1L) to quinary‐layer (5L) WSe2 nanosheets and WSe2 single crystals with a laser excitation power ranging from 20 μW to 5.1 mW. Typical first‐order together with some second‐order and combinational Raman modes are observed. A new peak at around 308 cm?1 is observed in WSe2 except for the 1L WSe2, which might arise from interlayer interactions. Red shifting of the A1g mode and the Raman peak around 308 cm?1 is observed from 1L to 5L WSe2. Interestingly, hexagonal‐ and monoclinic‐structured WO3 thin films are obtained during the local oxidation of thinner (1L–3L) and thicker (4L and 5L) WSe2 nanosheets, while laser‐burned holes are found during the local oxidation of the WSe2 single crystal. In addition, the characterization of TaS2 and TaSe2 thin layers is also conducted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号