首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
All‐solid‐state lithium metal batteries (ASSLMBs) have attracted significant attention due to their superior safety and high energy density. However, little success has been made in adopting Li metal anodes in sulfide electrolyte (SE)‐based ASSLMBs. The main challenges are the remarkable interfacial reactions and Li dendrite formation between Li metal and SEs. In this work, a solid‐state plastic crystal electrolyte (PCE) is engineered as an interlayer in SE‐based ASSLMBs. It is demonstrated that the PCE interlayer can prevent the interfacial reactions and lithium dendrite formation between SEs and Li metal. As a result, ASSLMBs with LiFePO4 exhibit a high initial capacity of 148 mAh g?1 at 0.1 C and 131 mAh g?1 at 0.5 C (1 C = 170 mA g?1), which remains at 122 mAh g?1 after 120 cycles at 0.5 C. All‐solid‐state Li‐S batteries based on the polyacrylonitrile‐sulfur composite are also demonstrated, showing an initial capacity of 1682 mAh g?1. The second discharge capacity of 890 mAh g?1 keeps at 775 mAh g?1 after 100 cycles. This work provides a new avenue to address the interfacial challenges between Li metal and SEs, enabling the successful adoption of Li metal in SE‐based ASSLMBs with high energy density.  相似文献   

2.
High‐energy‐density lithium metal batteries are considered the most promising candidates for the next‐generation energy storage systems. However, conventional electrolytes used in lithium‐ion batteries can hardly meet the demand of the lithium metal batteries due to their intrinsic instability for Li metal anodes and high‐voltage cathodes. Herein, an ester‐based electrolyte with tris(trimethylsilyl)phosphate additive that can form stable solid electrolyte interphases on the anode and cathode is reported. The additive decomposes before the ester solvent and enables the formation of P‐ and Si‐rich interphases on both electrodes that are ion conductive and robust. Thus, lithium metal batteries with a high‐specific‐energy of 373 Wh kg?1 can exhibit a long lifespan of over 80 cycles under practical conditions, including a low negative/positive capacity ratio of 2.3, high areal capacity of 4.5 mAh cm?2 for cathode, high‐voltage of 4.5 V, and lean electrolyte of 2.8 µL mAh?1. A 4.5 V pouch cell is further assembled to demonstrate the practical application of the tris(trimethylsilyl)phosphate additive with an areal capacity of 10.2 and 9.4 mAh cm?2 for the anode and cathode, respectively. This work is expected to provide an effective electrolyte optimizing strategy compatible with current lithium ion battery manufacturing systems and pave the way for the next‐generation Li metal batteries with high specific energy and energy density.  相似文献   

3.
NASCION‐type Li conductors have great potential to bring high capacity solid‐state batteries to realization, related to its properties such as high ionic conductivity, stability under ambient conditions, wide electrochemical stability window, and inexpensive production. However, their chemical and thermal instability toward metallic lithium (Li) has severely hindered attempts to utilize Li as anode material in NASCION‐based battery systems. In this work, it is shown how a tailored multifunctional interlayer between the solid electrolyte and Li anode can successfully address the interfacial issues. This interlayer is designed by creating a quasi‐solid‐state paste in which the functionalities of LAGP (Li1.5Al0.5Ge1.5(PO4)3) nanoparticles and an ionic liquid (IL) electrolyte are combined. In a solid‐sate cell, the LAGP‐IL interlayer separates the Li metal from bulk LAGP and creates a chemically stable interface with low resistance (≈5 Ω cm2) and efficiently prevents thermal runaway at elevated temperatures (300 °C). Solid‐state cells designed with the interlayer can be operated at high current densities, 1 mA cm?2, and enable high rate capability with high safety. Here developed strategy provides a generic path to design interlayers for solid‐state Li metal batteries.  相似文献   

4.
With the significant progress made in the development of cathodes in lithium‐sulfur (Li‐S) batteries, the stability of Li metal anodes becomes a more urgent challenge in these batteries. Here the systematic investigation of the stability of the anode/electrolyte interface in Li‐S batteries with concentrated electrolytes containing various lithium salts is reported. It is found that Li‐S batteries using LiTFSI‐based electrolytes are more stable than those using LiFSI‐based electrolytes. The decreased stability is because the N–S bond in the FSI? anion is fairly weak and the scission of this bond leads to the formation of lithium sulfate (LiSOx) in the presence of polysulfide species. In contrast, in the LiTFSI‐based electrolyte, the lithium metal anode tends to react with polysulfide to form lithium sulfide (LiSx), which is more reversible than LiSOx formed in the LiFSI‐based electrolyte. This fundamental difference in the bond strength of the salt anions in the presence of polysulfide species leads to a large difference in the stability of the anode‐electrolyte interface and performance of the Li‐S batteries with electrolytes composed of these salts. Therefore, anion selection is one of the key parameters in the search for new electrolytes for stable operation of Li‐S batteries.  相似文献   

5.
Solid state lithium metal batteries are the most promising next‐generation power sources owing to their high energy density and safety. Solid polymer electrolytes (SPE) have gained wide attention due to the excellent flexibility, manufacturability, lightweight, and low‐cost processing. However, fatal drawbacks of the SPE such as the insufficient ionic conductivity and Li+ transference number at room temperature restrict their practical application. Here vertically aligned 2D sheets are demonstrated as an advanced filler for SPE with enhanced ionic conductivity, Li+ transference number, mechanical modulus, and electrochemical stability, using vermiculite nanosheets as an example. The vertically aligned vermiculite sheets (VAVS), prepared by the temperature gradient freezing, provide aligned, continuous, run‐through polymer‐filler interfaces after infiltrating with polyethylene oxide (PEO)‐based SPE. As a result, ionic conductivity as high as 1.89 × 10?4 S cm?1 at 25 °C is achieved with Li+ transference number close to 0.5. Along with their enhanced mechanical strength, Li|Li symmetric cells using VAVS–CSPE are stable over 1300 h with a low overpotential. LiFePO4 in all‐solid‐state lithium metal batteries with VAVS–CSPE could deliver a specific capacity of 167 mAh g?1 at 0.1 C at 35 °C and 82% capacity retention after 200 cycles at 0.5 C.  相似文献   

6.
Ionic liquid (IL) electrolytes with concentrated Li salt can ensure safe, high‐performance Li metal batteries (LMBs) but suffer from high viscosity and poor ionic transport. A locally concentrated IL (LCIL) electrolyte with a non‐solvating, fire‐retardant hydrofluoroether (HFE) is presented. This rationally designed electrolyte employs lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 1‐methyl‐1‐propyl pyrrolidinium bis(fluorosulfonyl)imide (P13FSI) and 1,1,2,2‐tetrafluoroethyl 2,2,3,3‐tetrafluoropropyl ether (TTE) as the IL and HFE, respectively (1:2:2 by mol). Adding TTE enables a Li‐concentrated IL electrolyte with low viscosity and good separator wettability, facilitating Li‐ion transport to the Li metal anode. The non‐flammability of TTE contributes to excellent thermal stability. Furthermore, synergy between the dual (FSI/TFSI) anions in the LCIL electrolyte can help modify the solid electrolyte interphase, increasing Li Coulombic efficiency and decreasing dendritic Li deposition. LMBs (Li||LiCoO2) employing the LCIL electrolyte exhibit good rate capability (≈89 mAh g?1 at 1.8 mA cm?2, room temperature) and long‐term cycling (≈80% retention after 400 cycles).  相似文献   

7.
The use of lithium‐ion conductive solid electrolytes offers a promising approach to address the polysulfide shuttle and the lithium‐dendrite problems in lithium‐sulfur (Li‐S) batteries. One critical issue with the development of solid‐electrolyte Li‐S batteries is the electrode–electrolyte interfaces. Herein, a strategic approach is presented by employing a thin layer of a polymer with intrinsic nanoporosity (PIN) on a Li+‐ion conductive solid electrolyte, which significantly enhances the ionic interfaces between the electrodes and the solid electrolyte. Among the various types of Li+‐ion solid electrolytes, NASICON‐type Li1+xAlxTi2‐x(PO4)3 (LATP) offers advantages in terms of Li+‐ion conductivity, stability in ambient environment, and practical viability. However, LATP is susceptible to reaction with both the Li‐metal anode and polysulfides in Li‐S batteries due to the presence of easily reducible Ti4+ ions in it. The coating with a thin layer of PIN presented in this study overcomes the above issues. At the negative‐electrode side, the PIN layer prevents the direct contact of Li‐metal with the LATP solid electrolyte, circumventing the reduction of LATP by Li metal. At the positive electrode side, the PIN layer prevents the migration of polysulfides to the surface of LATP, preventing the reduction of LATP by polysulfides.  相似文献   

8.
Lithium metal batteries (LMBs) possessing ultrahigh energy density are promising next‐generation battery systems, but the short cycle life and safety concerns caused by the uncontrollable growth of lithium dendrites impede their broad applications. Herein, to address these issues, an ultrarobust composite gel electrolyte (CGE) that can effectively stabilize ion deposition for LMBs is designed via fabricating a specially structured aerogel as the matrix. The gel electrolyte matrix with a 3D interconnected highly porous structures and good affinity with liquid electrolytes is fabricated via compositing bacterial cellulose (BC) and Li0.33La0.557TiO3 nanowires (LLTO NWs) into an aerogel. The composite aerogel matrix demonstrates excellent wettability and liquid electrolyte uptake (586 ± 5%), and the resulting CGE presents exceptional Young's modulus of 1.15 GPa and an extremely high lithium‐ion transference number of 0.88. More significantly, the synergistic effect from the robust BC skeleton and LLTO NWs enabling stable ion deposition effectively suppresses the growth of lithium dendrites. Armed with the CGE, ultrastable symmetric Li/Li cells demonstrate a long cycle life of 1200 h and highly stable performance even at a high current density of 5 mA cm?2. Furthermore, half cells with the CGE exhibit remarkable enhancement in capacity, cycling stability, and rate performance.  相似文献   

9.
The stability of electrolytes against highly reactive, reduced oxygen species is crucial for the development of rechargeable Li–O2 batteries. In this work, the effect of lithium salt concentration in 1,2‐dimethoxyethane (DME)‐based electrolytes on the cycling stability of Li–O2 batteries is investigated systematically. Cells with highly concentrated electrolyte demonstrate greatly enhanced cycling stability under both full discharge/charge (2.0–4.5 V vs Li/Li+) and the capacity‐limited (at 1000 mAh g?1) conditions. These cells also exhibit much less reaction residue on the charged air‐electrode surface and much less corrosion of the Li‐metal anode. Density functional theory calculations are used to calculate molecular orbital energies of the electrolyte components and Gibbs activation energy barriers for the superoxide radical anion in the DME solvent and Li+–(DME) n solvates. In a highly concentrated electrolyte, all DME molecules are coordinated with salt cations, and the C–H bond scission of the DME molecule becomes more difficult. Therefore, the decomposition of the highly concentrated electrolyte can be mitigated, and both air cathodes and Li‐metal anodes exhibit much better reversibility, resulting in improved cyclability of Li–O2 batteries.  相似文献   

10.
Silicon (Si) and lithium metal are the most favorable anodes for high‐energy‐density lithium‐based batteries. However, large volume expansion and low electrical conductivity restrict commercialization of Si anodes, while dendrite formation prohibits the applications of lithium‐metal anodes. Here, uniform nanoporous Si@carbon (NPSi@C) from commercial alloy and CO2 is fabricated and tested as a stable anode for lithium‐ion batteries (LIBs). The porosity of Si as well as graphitization degree and thickness of the carbon layer can be controlled by adjusting reaction conditions. The rationally designed porosity and carbon layer of NPSi@C can improve electronic conductivity and buffer volume change of Si without destroying the carbon layer or disrupting the solid electrolyte interface layer. The optimized NPSi@C anode shows a stable cyclability with 0.00685% capacity decay per cycle at 5 A g?1 over 2000 cycles for LIBs. The energy storage mechanism is explored by quantitative kinetics analysis and proven to be a capacitance‐battery dual model. Moreover, a novel 2D/3D structure is designed by combining MXene and NPSi@C. As lithiophilic nucleation seeds, NPSi@C can induce uniform Li deposition with buffered volume expansion, which is proven by exploring Li‐metal deposition morphology on Cu foil and MXene@NPSi@C. The practical potential application of NPSi@C and MXene@NPSi@C is evaluated by full cell tests with a Li(Ni0.8Co0.1Mn0.1)O2 cathode.  相似文献   

11.
The serious safety issues caused by uncontrollable lithium (Li) dendrite growth, especially at high current densities, seriously hamper the rapid charging of Li metal‐based batteries. Here, the construction of Al–Li alloy/LiCl‐based Li anode (ALA/Li anode) is reported by displacement and alloying reaction between an AlCl3‐ionic liquid and a Li foil. This layer not only has high ion‐conductivity and good electron resistivity but also much improved mechanical strength (776 MPa) as well as good flexibility compared to a common solid electrolyte interphase layer (585 MPa). The high mechanical strength of the Al–Li alloy interlayer effectively eliminates volume expansion and dendrite growth in Li metal batteries, so that the ALA/Li anode achieves superior cycling for 1600 h (2.0 mA cm?2) and 1000 cycles at an ultrahigh current density (20 mA cm?2) without dendrite formation in symmetric batteries. In lithium–sulfur batteries, the dense alloy layer prevents direct contact between polysulfides and Li metal, inhibiting the shuttle effect and electrolyte decomposition. Long cycling performance is achieved even at a high current density (4 C) and a low electrolyte/sulfur (6.0 µL mg?1). This easy fabrication process provides a strategy to realize reliable safety during the rapid charging of Li‐metal batteries.  相似文献   

12.
Binders have been reported to play a key role in improving the cycle performance of Si anode materials of lithium‐ion batteries. In this study, the biopolymer guar gum (GG) is applied as the binder for a silicon nano­particle (SiNP) anode of a lithium‐ion battery for the first time. Due to the large number of polar hydroxyl groups in the GG molecule, a robust interaction between the GG binder and the SiNPs is achieved, resulting in a stable Si anode during cycling. More specifically, the GG binder can effectively transfer lithium ions to the Si surface, similarly to polyethylene oxide solid electrolytes. When GG is used as a binder, the SiNP anode can deliver an initial discharge capacity as high as 3364 mAh g?1, with a Coulombic efficiency of 88.3% at the current density of 2100 mA g?1, and maintain a capacity of 1561 mAh g?1 after 300 cycles. The study shows that the electrochemical performance of the SiNP anode with GG binder is significantly improved compared to that of a SiNP anode with a sodium alginate binder, and it demonstrates that GG is a promising binder for Si anodes of lithium‐ion batteries.  相似文献   

13.
Solid‐state lithium batteries are widely considered as next‐generation lithium‐ion battery technology due to the potential advantages in safety and performance. Among the various solid electrolyte materials, Li–garnet electrolytes are promising due to their high ionic conductivity and good chemical and electrochemical stabilities. However, the high electrode/electrolyte interfacial impedance is one of the major challenges. Moreover, short circuiting caused by lithium dendrite formation is reported when using Li–garnet electrolytes. Here, it is demonstrated that Li–garnet electrolytes wet well with lithium metal by removing the intrinsic impurity layer on the surface of the lithium metal. The Li/garnet interfacial impedance is determined to be 6.95 Ω cm2 at room temperature. Lithium symmetric cells based on the Li–garnet electrolytes are cycled at room temperature for 950 h and current density as high as 13.3 mA cm?2 without showing signs of short circuiting. Experimental and computational results reveal that it is the surface oxide layer on the lithium metal together with the garnet surface that majorly determines the Li/garnet interfacial property. These findings suggest that removing the superficial impurity layer on the lithium metal can enhance the wettability, which may impact the manufacturing process of future high energy density garnet‐based solid‐state lithium batteries.  相似文献   

14.
A unique way of robustly integrating an elastomer film onto a graphitic anode and then post process it into a solid‐state electrolyte for lithium‐ion battery applications is reported. The mutual solvability of the elastomer and the binder of the graphitic anode (carboxymethyl cellulose, (CMC)) in dimethylformamide facilitates the fusion of the two heterogeneous layers. Dimensional dynamics evolved during the integrated elastomer conversion into a solid electrolyte by liquid electrolyte uptake reveal a notable preferential uniaxial elongation along the normal plane. In contrast, the non‐integrated counterpart elongates along the transversal axis. These elastomer exhibits high ionic conductance (≈10–2 S cm?1). Half‐cells constructed with our electrolyte integrated electrode exhibit magnificent reduction and oxidation (REDOX) behavior. The efficient charge transfer across the snugly confined semi‐solid electrolyte/electrode interface layer leads to a high rate capability of 0.31 mAh cm?2 (41 mAh g?1) at 2 C which is double that of a graphitic conventional half‐cell. Unlike regular graphitic electrodes which degrade over time, this electrode remains robust, thanks to its propensity to retain its inherent elasticity. This work demonstrates a facile and scalable paradigm, in fabrication of flexible electrolytes that can easily be integrated to 3D devices and opens opportunities for developing, structurally conformable batteries of varied geometries.  相似文献   

15.
Sodium‐ion batteries have been considered one of the most promising power sources beyond Li‐ion batteries. Although the Na metal anode exhibits a high theoretical capacity of 1165 mAh g?1, its application in Na batteries is largely hindered by dendrite growth and low coulombic efficiency. Herein, it is demonstrated that an electrolyte consisting of 1 m sodium tetrafluoroborate in tetraglyme can enable excellent cycling efficiency (99.9%) of a Na metal anode for more than 1000 cycles. This high reversibility of a Na anode can be attributed to a stable solid electrolyte interphase formed on the Na surface, as revealed by cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy (XPS). These electrolytes also enable excellent cycling stability of Na||hard‐carbon cells and Na||Na2/3Co1/3Mn2/3O2 cells at high rates with very high coulombic efficiencies.  相似文献   

16.
High capacity electrodes based on a Si composite anode and a layered composite oxide cathode, Ni‐rich Li[Ni0.75Co0.1Mn0.15]O2, are evaluated and combined to fabricate a high energy lithium ion battery. The Si composite anode, Si/C‐IWGS (internally wired with graphene sheets), is prepared by a scalable sol–gel process. The Si/C‐IWGS anode delivers a high capacity of >800 mAh g?1 with an excellent cycling stability of up to 200 cycles, mainly due to the small amount of graphene (~6 wt%). The cathode (Li[Ni0.75Co0.1Mn0.15]O2) is structurally optimized (Ni‐rich core and a Ni‐depleted shell with a continuous concentration gradient between the core and shell, i.e., a full concentration gradient, FCG, cathode) so as to deliver a high capacity (>200 mAh g?1) with excellent stability at high voltage (~4.3 V). A novel lithium ion battery system based on the Si/C‐IWGS anode and FCG cathode successfully demonstrates a high energy density (240 Wh kg?1 at least) as well as an unprecedented excellent cycling stability of up to 750 cycles between 2.7 and 4.2 V at 1C. As a result, the novel battery system is an attractive candidate for energy storage applications demanding a high energy density and long cycle life.  相似文献   

17.
Ion gel electrolytes show great potential in solid‐state batteries attributed to their outstanding characteristics. However, because of the strong ionic nature of ionic liquids, ion gel electrolytes generally exhibit low lithium‐ion transference number, limiting its practical application. Amine‐functionalized boron nitride (BN) nanosheets (AFBNNSs) are used as an additive into ion gel electrolytes for improving their ion transport properties. The AFBNNSs‐ion gel shows much improved mechanical strength and thermal stability. The lithium‐ion transference number is increased from 0.12 to 0.23 due to AFBNNS addition. More importantly, for the first time, nuclear magnetic resonance analysis reveals that the amine groups on the BN nanosheets have strong interaction with the bis(trifluoromethanesulfonyl)imide anions, which significantly reduces the anion mobility and consequently increases lithium‐ion mobility. Battery cells using the optimized AFBNNSs‐ion gel electrolyte exhibit stable lithium deposition and excellent electrochemical performance. A LiFePO4|Li cell retains 92.2% of its initial specific capacity after the 60th cycle while the cell without AFBNNSs‐gel electrolyte only retains 53.5%. The results not only demonstrate a new strategy to improve lithium‐ion transference number in ionic liquid electrolytes, but also open up a potential avenue to achieve solid‐state lithium metal batteries with improved performance.  相似文献   

18.
Rechargeable batteries with a Li metal anode and Ni‐rich Li[NixCoyMn1?x?y]O2 cathode (Li/Ni‐rich NCM battery) have been emerging as promising energy storage devices because of their high‐energy density. However, Li/Ni‐rich NCM batteries have been plagued by the issue of the thermodynamic instability of the Li metal anode and aggressive surface chemistry of the Ni‐rich cathode against electrolyte solution. In this study, a bi‐functional additive, adiponitrile (C6H8N2), is proposed which can effectively stabilize both the Li metal anode and Ni‐rich NCM cathode interfaces. In the Li/Ni‐rich NCM battery, the addition of 1 wt% adiponitrile in 0.8 m LiTFSI + 0.2 M LiDFOB + 0.05 M LiPF6 dissolved in EMC/FEC = 3:1 electrolyte helps to produce a conductive and robust Li anode/electrolyte interface, while strong coordination between Ni4+ on the delithiated Ni‐rich cathode and nitrile group in adiponitrile reduces parasitic reactions between the electrolyte and Ni‐rich cathode surface. Therefore, upon using 1 wt% adiponitrile, the Li/full concentration gradient Li[Ni0.73Co0.10Mn0.15Al0.02]O2 battery achieves an unprecedented cycle retention of 75% over 830 cycles under high‐capacity loading of 1.8 mAh cm?2 and fast charge–discharge time of 2 h. This work marks an important step in the development of high‐performance Li/Ni‐rich NCM batteries with efficient electrolyte additives.  相似文献   

19.
The lithium metal anode is one of the most promising anodes for next‐generation high‐energy‐density batteries. However, the severe growth of Li dendrites and large volume expansion leads to rapid capacity decay and shortened lifetime, especially in high current density and high capacity. Herein, a soft 3D Au nanoparticles@graphene hybrid aerogel (Au? GA) as a lithiophilic host for lithium metal anode is proposed. The large surface area and interconnected conductive pathways of the Au? GA significantly decrease the local current density of the electrode, enabling uniform Li deposition. Furthermore, the 3D porous structure effectively accommodates the large volume expansion during Li plating/stripping, and the LixAu alloy serves as a solid solution buffer layer to completely eliminate the Li nucleation over‐potential. Symmetric cells can stably cycle at 8 mA cm?2 for 8 mAh cm?2 and exhibit ultra‐long cycling: 1800 h at 2 mA cm?2 for 2 mAh cm?2, and 1200 h at 4 mA cm?2 for 4 mAh cm?2, with low over‐potential. Full cells assemble with a Cu@Au? GA? Li anode and LiFePO4 cathode, can sustain a high rate of 8 C, and retain a high capacity of 59.6 mAh g?1 after 1100 cycles at 2 C.  相似文献   

20.
Metal oxide‐based nanomaterials are widely studied because of their high‐energy densities as anode materials in lithium‐ion batteries. However, the fast capacity degradation resulting from the large volume expansion upon lithiation hinders their practical application. In this work, the preparation of walnut‐like multicore–shell MnO encapsulated nitrogen‐rich carbon nanocapsules (MnO@NC) is reported via a facile and eco‐friendly process for long‐cycling Li‐ion batteries. In this hybrid structure, MnO nanoparticles are uniformly dispersed inside carbon nanoshells, which can simultaneously act as a conductive framework and also a protective buffer layer to restrain the volume variation. The MnO@NC nanocapsules show remarkable electrochemical performances for lithium‐ion batteries, exhibiting high reversible capability (762 mAh g?1 at 100 mA g?1) and stable cycling life (624 mAh g?1 after 1000 cycles at 1000 mA g?1). In addition, the soft‐packed full batteries based on MnO@NC nanocapsules anodes and commercial LiFePO4 cathodes present good flexibility and cycling stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号