首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Photodetectors with ultrafast response are explored using inorganic/organic hybrid perovskites. High responsivity and fast optoelectronic response are achieved due to the exceptional semiconducting properties of perovskite materials. However, most of the perovskite‐based photodetectors exploited to date are centered on Pb‐based perovskites, which only afford spectral response across the visible spectrum. This study demonstrates a high‐performance near‐IR (NIR) photodetector using a stable low‐bandgap Sn‐containing perovskite, (CH3NH3)0.5(NH2CHNH2)0.5Pb0.5Sn0.5I3 (MA0.5FA0.5Pb0.5Sn0.5I3), which is processed with an antioxidant additive, ascorbic acid (AA). The addition of AA effectively strengthens the stability of Sn‐containing perovskite against oxygen, thereby significantly inhibiting the leakage current. Consequently, the derived photodetector shows high responsivity with a detectivity of over 1012 Jones ranging from 800 to 970 nm. Such low‐cost, solution processable NIR photodetectors with high performance show promising potential for future optoelectronic applications.  相似文献   

3.
3D organic–inorganic and all‐inorganic lead halide perovskites have been intensively pursued for resistive switching memories in recent years. Unfortunately, instability and lead toxicity are two foremost challenges for their large‐scale commercial applications. Dimensional reduction and composition engineering are effective means to overcome these challenges. Herein, low‐dimensional inorganic lead‐free Cs3Bi2I9 and CsBi3I10 perovskite‐like films are exploited for resistive switching memory applications. Both devices demonstrate stable switching with ultrahigh on/off ratios (≈106), ultralow operation voltages (as low as 0.12 V), and self‐compliance characteristics. 0D Cs3Bi2I9‐based device shows better retention time and larger reset voltage than the 2D CsBi3I10‐based device. Multilevel resistive switching behavior is also observed by modulating the current compliance, contributing to the device tunability. The resistive switching mechanism is hinged on the formation and rupture of conductive filaments of halide vacancies in the perovskite films, which is correlated with the formation of AgIx layers at the electrode/perovskite interface. This study enriches the library of switching materials with all‐inorganic lead‐free halide perovskites and offers new insights on tuning the operation of solution‐processed memory devices.  相似文献   

4.
It is a great challenge to obtain broadband response perovskite photodetectors (PPDs) due to the relatively large bandgaps of the most used methylammonium lead halide perovskites. The response range of the reported PPDs is limited in the ultraviolet–visible range. Here, highly sensitive PPDs are successfully fabricated with low bandgap (≈1.25 eV) (FASnI3)0.6(MAPbI3)0.4 perovskite as active layers, exhibiting a broadband response from 300 to 1000 nm. The performance of the PPDs can be optimized by adjusting the thicknesses of the perovskite and C60 layers. The optimized PPDs with 1000 nm thick perovskite layer and 70 nm thick C60 layer exhibit an almost flat external quantum efficiency (EQE) spectrum from 350 to 900 nm with EQE larger than 65% under ?0.2 V bias. Meanwhile, the optimized PPDs also exhibit suppressed dark current of 3.9 nA, high responsivity (R ) of over 0.4 A W?1, high specific detectivity (D* ) of over 1012 Jones in the near‐infrared region under ?0.2 V. Such highly sensitive broadband response PPDs, which can work well as self‐powered conditions, offer great potential applications in multicolor light detection.  相似文献   

5.
Here, a detailed characterization of the optical gain properties of sky‐blue‐light‐emitting pyrene‐cored 9,9‐dialkylfluorene starbursts is reported; it is shown that these materials possess encouragingly low laser thresholds and relatively high thermal and environmental stability. The materials exhibit high solid‐state photoluminescence (PL) quantum efficiencies (>90%) and near‐single‐exponential PL decay transients with excited state lifetimes of ~1.4 ns. The thin‐film slab waveguide amplified spontaneous emission (ASE)‐measured net gain reaches 75–78 cm?1. The ASE threshold energy is found to remain unaffected by heating at temperatures up to 130 °C, 40 to 50 °C above Tg. The ASE remained observable for annealing temperatures up to 170 or 200 °C. 1D distributed feedback lasers with 75% fill factor and 320 nm period show optical pumping thresholds down to 38–65 Wcm?2, laser slope efficiencies up to 3.9%, and wavelength tuning ranges of ~40 nm around 471–512 nm. In addition, these lasers have relatively long operational lifetimes, with N1/2 ≥ 1.1 × 105 pulses for unencapsulated devices operated at ten times threshold in air.  相似文献   

6.
Recently, newly engineered all‐inorganic cesium lead halide perovskite nanocrystals (IPNCs) (CsPbX3, X = Cl, Br, I) are discovered to possess superior optical gain properties appealing for solution‐processed cost‐effective lasers. Yet, the potential of such materials has not been exploited for practical laser devices, rendering the prospect as laser media elusive. Herein, the challenging but practically desirable vertical cavity surface emitting lasers (VCSELs) based on the CsPbX3 IPNCs, featuring low threshold (9 µJ cm?2), directional output (beam divergence of ≈3.6°), and favorable stability, are realized for the first time. Notably, the lasing wavelength can be tuned across the red, green, and blue region maintaining comparable thresholds, which is promising in developing single‐source‐pumped full‐color visible lasers. It is fully demonstrated that the characteristics of the VCSELs can be versatilely engineered by independent adjustment of the cavity and solution‐processable nanocrystals. The results unambiguously reveal the feasibility of the emerging CsPbX3 IPNCs as practical laser media and represent a significant leap toward CsPbX3 IPNC‐based laser devices.  相似文献   

7.
The recent rise of low‐dimensional Ruddlesden–Popper (RP) perovskites is notable for superior humidity stability, however they suffer from low power conversion efficiency (PCE). Suitable organic spacer cations with special properties display a critical effect on the performance and stability of perovskite solar cells (PSCs). Herein, a new strategy of designing self‐additive low‐dimensional RP perovskites is first proposed by employing a glycine salt (Gly+) with outstanding additive effect to improve the photovoltaic performance. Due to the strong interaction between C?O and Pb2+, the Gly+ can become a nucleation center and be beneficial to uniform and fast growth of the Gly‐based RP perovskites with larger grain sizes, leading to reduced grain boundary and increased carrier transport. As a result, the Gly‐based self‐additive low‐dimensional RP perovskites exhibit remarkable photoelectric properties, yielding the highest PCE of 18.06% for Gly (n = 8) devices and 15.61% for Gly (n = 4) devices with negligible hysteresis. Furthermore, the Gly‐based devices without encapsulation show excellent long‐term stability against humidity, heat, and UV light in comparison to BA‐based low‐dimensional PSCs. This approach provides a feasible design strategy of new‐type low‐dimensional RP perovskites to obtain highly efficient and stable devices for next‐generation photovoltaic applications.  相似文献   

8.
Green and amplified spontaneous emissions with low thresholds are crucial for the development of solution-processable perovskite light sources. Although mixed-cation CsPbBr3 perovskites are highly promising, pinholes are inevitably formed during the spin-coating process, which results in considerable optical losses. This study proposes a solvent recrystallization strategy to reduce the number of pinholes and enhance the crystallinity of (Cs, FA, MA)PbBr3/NMA (FA = CH(NH2)2, MA = CH3NH3, and NMA = C11H9NH3) films in a dimethyl sulfoxide gas environment. Amplified spontaneous green emissions are produced with a low threshold of 1.44 μJ cm−2 and a high net modal gain of 1176 cm−1. The reduced threshold is attributed to the relatively low propagation loss and suppressed Auger recombination, which results from the formation of a pinhole-free surface and enlarged grain size. These results can be utilized in the development of high-performance perovskite laser devices.  相似文献   

9.
Perovskite‐based optoelectronic devices have shown remarkable performances, especially in the field of photovoltaics. Still, a rapid solution‐processing approach able to produce localized stable perovskite crystals remains a general challenge, and is a key step toward the miniaturization of such materials in on‐chip components. This study presents the confined growth of methylammonium (MA) lead halide perovskite crystals that is thermally induced through localized laser irradiation. Importantly, such structures remain stable over time; that is, they neither dissolve back into the surrounding liquid nor detach from the substrate. This is attributed to a chemical reaction locally triggered by the induced heat on the substrate surface that is transferred to the perovskite precursors (liquid) layer, thus generating “on‐demand” MA ions from the N‐methylformamide solvent. By tuning the laser parameters, such as power density or irradiation time, variations in shape and size of the crystals, from microcrystals of ≈50 µm to nanocuboids of ≈500 nm, are observed. This study also demonstrates that with an optimized distance between the irradiated regions and by controlling the relative laser displacement speed, luminescent and photoconductive MAPbBr3 wires and microplates can be generated.  相似文献   

10.
Low‐temperature‐processed inverted perovskite solar cells (PVSCs) attract increasing attention because they can be fabricated on both rigid and flexible substrates. For these devices, hole‐transporting layers (HTLs) play an important role in achieving efficient and stable inverted PVSCs by adjusting the anodic work function, hole extraction, and interfacial charge recombination. Here, the use of a low‐temperature (≤150 °C) solution‐processed ultrathin film of poly[(9,9‐dioctyl‐fluorenyl‐2,7‐diyl)‐co‐(4,4′‐(N‐(4‐secbutylphenyl) diphenylamine)] (TFB) is reported as an HTL in one‐step‐processed CH3NH3PbI3 (MAPbI3)‐based inverted PVSCs. The fabricated device exhibits power conversion efficiency (PCE) as high as 20.2% when measured under AM 1.5 G illumination. This PCE makes them one of the MAPbI3‐based inverted PVSCs that have the highest efficiency reported to date. Moreover, this inverted PVSC also shows good stability, which can retain 90% of its original efficiency after 30 days of storage in ambient air.  相似文献   

11.
Light‐emitting diodes (LEDs) based on lead halide perovskites demonstrate outstanding optoelectronic properties and are strong competitors for display and lighting applications. While previous halide perovskite LEDs are mainly produced via solution processing, here an all‐vacuum processing method is employed to construct CsPbBr3 LEDs because vacuum processing exhibits high reliability and easy integration with existing OLED facilities for mass production. The high‐throughput combinatorial strategies are further adopted to study perovskite composition, annealing temperature, and functional layer thickness, thus significantly speeding up the optimization process. The best rigid device shows a current efficiency (CE) of 4.8 cd A?1 (EQE of 1.45%) at 2358 cd m?2, and best flexible device shows a CE of 4.16 cd A?1 (EQE of 1.37%) at 2012 cd m?2 with good bending tolerance. Moreover, by choosing NiOx as the hole‐injection layer, the CE is improved to 10.15 cd A?1 and EQE is improved to a record of 3.26% for perovskite LEDs produced by vacuum deposition. The time efficient combinatorial approaches can also be applied to optimize other perovskite LEDs.  相似文献   

12.
Pb‐based metal halide perovskites (MHPs) have emerged as efficient light absorbers in third‐generation photovoltaic devices, and the latest certified power conversion efficiency (PCE) of Pb‐based perovskite solar cells (PSCs) has reached 25.2%. Despite great progress, Pb‐based MHPs are affected by toxicity, which hinders their market entry in a potential future large‐scale commercialization effort. Therefore, the exploration of Pb‐free MHPs has become one of the alternative solutions sought in the community. Among all the Pb‐free MHPs, Sn‐based MHPs show great promise owing to their similar or even superior theoretical optoelectronic characteristics. After several years of development, the PCE of Sn‐based PSCs has recently been approaching 10%, with the breakthroughs mainly coming from A‐site cation engineering of Sn‐based MHPs. In this review, the crucial status of A‐site cation engineering strategies in the research of Sn‐based PSCs is highlighted. First, the way the features of A‐site cation influence the structure and characteristics of MHPs is systematically demonstrated. Then, the state‐of‐the‐art developments, focusing on A‐site cation engineering of Sn‐based MHPs, are comprehensively reviewed. Subsequently, the current challenges and opportunities for further boosting the performance of Sn‐based PSCs are discussed. Finally, conclusions and perspectives on the promising Sn‐based optoelectronic devices are discussed.  相似文献   

13.
Lead‐free perovskite materials are exhibiting bright application prospects in photodetectors (PDs) owing to their low toxicity compared with traditional lead perovskites. Unfortunately, their photoelectric performance is constrained by the relatively low charge conductivity and poor stability. In this work, photoresponsive transistors based on stable lead‐free bismuth perovskites CsBi3I10 and single‐walled carbon nanotubes (SWCNTs) are first reported. The SWCNTs significantly strengthen the dissociation and transportation of the photogenerated charge carriers, which lead to dramatically improved photoresponsivity, while a decent Ilight/Idark ratio over 102 can be maintained with gate modulation. The devices exhibit high photoresponsivity (6.0 × 104 A W?1), photodetectivity (2.46 × 1014 jones), and external quantum efficiency (1.66 × 105%), which are among the best reported results in lead‐free perovskite PDs. Furthermore, the excellent stability over many other lead‐free perovskite PDs is demonstrated over 500 h of testing. More interestingly, the device also shows the application potential as a light‐stimulated synapse and its synaptic behaviors are demonstrated. In summary, the lead‐free bismuth perovskite‐based hybrid phototransistors with multifunctional performance of photodetection and light‐stimulated synapse are first demonstrated in this work.  相似文献   

14.
All‐inorganic perovskite light‐emitting diodes (LEDs) reveal efficient luminescence with high color purity, but their modest brightness and poor stability are still critical drawbacks. Here, the luminescent efficiency and the stability of perovskite LEDs (PeLEDs) are boosted by antisolvent vapor treatment of CsPbBr3 embedded in a dielectric polymer matrix of polyethylene oxide (PEO). A unique method is developed to obtain high quality CsPbBr3 emitting layers with low defects by controlling their grain sizes. CsPbBr3 in PEO matrix is post‐treated with antisolvent of chloroform (CF), leading to microcrystals with a size of ≈5 µm along the in‐plane direction with active emitting composite of 90%. A device based on CF post‐treatment (CsPbBr3‐PEO‐CF) film displays a brightness of up to 51890 cd m?2 with an external quantum efficiency of 4.76%. CsPbBr3‐PEO‐CF PeLED still maintains 82% of its initial efficiency after 80 h continuous operation in ambient air, which indicates relatively good device stability. This work highlights that film quality is not only key to promoting fluorescence in CsPbBr3, but also to achieving higher performance PeLEDs.  相似文献   

15.
The application of single‐walled carbon nanotubes (SWCNTs) as saturable absorbers (SA) in a Nd:glass femtosecond laser is verified as a promising alternative to traditional semiconductor saturable‐absorber mirrors (SESAMs). The shortest laser pulses achieved with a SWCNT‐SA fabricated by the slow‐evaporation method are reported herein. Nearly Fourier‐limited 288 fs pulses are obtained with negative‐dispersion soliton mode‐locking. The importance of the properties of the starting material, such as the degree of purity and the chirality, and the successive slow‐evaporation deposition method is proven by using a multitechnique approach based on X‐ray diffractometry, scanning electron microscopy, and μ‐Raman spectroscopy. The high degree of nanotube alignment on the glass substrate and also the slight metallic character due to electron transfer between the glass matrix and the nanotubes themselves are identified as the main features responsible for the good laser response.  相似文献   

16.
In this paper, we present an integrated rail‐to‐rail fully differential operational transconductance amplifier (OTA) working at low‐supply voltages (1.5 V) with reduced power consumption and showing high DC gain. An embedded adaptive biasing circuit makes it possible to obtain low stand‐by power dissipation (lower than 0.17 mW in the rail‐to‐rail version), while the high DC gain (over 78 dB) is ensured by positive feedback. The circuit, fabricated in a standard CMOS integrated technology (AMS 0.35 μm), presents a 37 V/μs slew‐rate for a capacitive load of 15 pF. Experimental results and high values of two quality factors, or figures of merit, show the validity of the proposed OTA, when compared with other OTA configurations.  相似文献   

17.
Efficient organic–inorganic metal halide perovskite absorbers have gained tremendous research interest in the past decade due to their super optoelectronic properties and defect tolerance. Lead (Pb) halide perovskites enable highly efficient perovskite solar cells (PSCs) with a record power conversion efficiency (PCE) of over 23%. However, the energy bandgaps of Pb halide perovskites are larger than the optimal bandgap for single junction solar cells, governed by the Shockley–Queisser (SQ) radiative limit. Mixed tin (Sn)‐Pb halide perovskites have drawn significant attention, since their bandgap can be tuned to below 1.2 eV, which opens a door for fabricating all‐perovskite tandem solar cells that can break the SQ radiative limit. This review summarizes the development of low‐bandgap mixed Sn‐Pb PSCs and their applications in all‐perovskite tandem solar cells. Its aim is to facilitate the development of new approaches to achieve high efficiency low‐bandgap single‐junction mixed Sn‐Pb PSCs and all‐perovskite tandem solar cells.  相似文献   

18.
Actively mode‐locked lasers offer varying degrees of flexibility for a wider range of applications than their passively modulated counterparts, due to their capability for electrically controlled ultrahigh repetition rate operation. Graphene based electrooptic modulators with unique advantages of broad operation bandwidth and ultrafast speed are suitable for light modulation in various optoelectronic applications. Here, an actively mode‐locked laser with a graphene based electrooptic modulator is reported for the first time. The active mode‐locking technique combined together with the intracavity nonlinear pulse shortening effect allows the generation of transform‐limited 1.44 ps pulses with pulse energy of 844 pJ. The electrically controlled repetition rate of generated pulses, a key performance advantage of active mode‐locking, is also demonstrated. These results provide a practical and effective approach for actively mode‐locked lasers with broad operation bandwidth and compact footprint, which contributes a new way for applications of two‐dimensional (2D) layered materials in ultrafast lasers.  相似文献   

19.
The booming development of organometal halide perovskites has prompted the exploration of morphology‐engineering strategies to improve their performance in optoelectronic applications. However, the preparation of optoelectronic devices of perovskites with complex architectures and desirable properties is still highly challenging. Herein, novel CH3NH3PbI3 nanonets and nanobowl arrays are fabricated facilely by using monolayer colloidal crystal (MCC) templates on different substrates. Specifically, highly ordered CH3NH3PbI3 nanonets with high crystallinity are fabricated on a variety of flat substrates, whereas regular CH3NH3PbI3 nanobowl arrays are produced on a coarse substrate. The photodetection performance of the CH3NH3PbI3 nanonet‐based photodetectors is significantly enhanced compared to the photodetectors based on conventional CH3NH3PbI3 compact films. Particularly, the nanonet photodetectors exhibit a high responsivity (10.33 A W?1 under 700 nm monochromatic light), which is six times higher than that for the compact CH3NH3PbI3 film devices, fast response speed, and good stability. Owing to the two‐dimensional arrayed structure, the CH3NH3PbI3 nanonets exhibit an enhanced light harvesting ability and offer direct carrier transport pathways. Meanwhile, the MCC template brings about larger grain sizes with enhanced crystallinity. Furthermore, the perovskite nanonets can be formed on a flexible polyethylene terephthalate substrate for the fabrication of promising flexible nanonet photodetectors.  相似文献   

20.
Organic–inorganic halide perovskites are intrinsically unstable when exposed to moisture and/or light. Additionally, the presence of lead in many perovskites raises toxicity concerns. Herein, a thin film of barium zirconium sulfide (BaZrS3), a lead‐free chalcogenide perovskite, is reported. Photoluminescence and X‐ray diffraction measurements show that BaZrS3 is far more stable than methylammonium lead iodide (MAPbI3) in moist environments. Moisture‐ and light‐induced degradations in BaZrS3 and MAPbI3 are compared by using simulations and calculations based on density functional theory. The simulations reveal drastically slower degradation in BaZrS3 due to two factors—weak interaction with water and very low rates of ion migration. BaZrS3 photodetecting devices with photoresponsivity of ≈46.5 mA W?1 are also reported. The devices retain ≈60% of their initial photoresponse after 4 weeks under ambient conditions. Similar MAPbI3 devices degrade rapidly and show a ≈95% decrease in photoresponsivity in just 4 days. The findings establish the superior stability of BaZrS3 and strengthen the case for its use in optoelectronics. New possibilities for thermoelectric energy conversion using these materials are also demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号