首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ternary structure that combines fullerene and nonfullerene acceptors in a photoactive layer is demonstrated as an effective approach for boosting the power conversion efficiencies (PCEs) of organic solar cells (OSCs). Here, highly efficient ternary OSCs comprising a wide‐bandgap polymer donor (PBT1‐C), a narrow‐bandgap nonfullerene acceptor (IT‐2F), and a typical fullerene derivative (PC71BM) are reported. It is found that the addition of PC71BM into the PBT1‐C:IT‐2F blend not only increases the device efficiency up to 12.2%, but also improves the ambient stability of the OSCs. Detailed investigations indicate that the improvement in photovoltaic performance benefits from synergistic effects of increased photon‐harvesting, enhanced charge separation and transport, suppressed trap‐assisted recombination, and optimized film morphology. Moreover, it is noticed that such a ternary system exhibits excellent tolerance to the PC71BM component, for which PCEs over 11.2% can be maintained throughout the whole blend ratios, higher than that (11.0%) of PBT1‐C:IT‐2F binary reference device.  相似文献   

2.
Nonfullerene acceptors have recently drawn considerable attention in bulk heterojunction organic solar cells (OSCs). The power conversion efficiency (PCE) over 14% is achieved in single‐junction fullerene‐free OSCs, which has surpassed that of fullerene‐based counterparts. For future commercial applications, however, a high and stable PCE > 15% is required, which entails rational material design and device optimization. In this context, three approaches are generally utilized—the synthesis of novel nonfullerene acceptors and the selection of suitable polymer donors to pair with them, the tandem or multijunction device architecture, and the ternary blend strategy. Compared to the former two methods, the ternary strategy allows to employ the existing photovoltaic materials and the single‐junction device. Therefore, an exploration of nonfullerene acceptor–based ternary blend OSCs (NFTSCs) has shown unprecedented progress since 2016. This review summarizes and classifies the photovoltaic materials utilized in NFTSCs, aiming to not only exhibit the recent development of NFTSCs but also elucidate the correlation among donor/acceptor materials, film morphology, transport dynamics, and device fabrication toward high‐efficiency OSCs. Lastly, the above key advances are highlighted along with the existing issues and insights into the viable path for the further research thrusts are offered.  相似文献   

3.
A new small‐molecule nonfullerene acceptor based on the benzo[1,2‐b:4,5‐b′]dithiophene (BDT) fused central core with asymmetrical alkoxy and thienyl side chains, namely TOBDT , is designed and synthesized. The alkoxy unit helps narrow the bandgap, and thienyl side chain helps enhance the intermolecular interaction. As a result, TOBDT is suitable to match the deep‐lying highest occupied molecular orbital (HOMO) of polymer donor PM6 . Then, a strong crystalline acceptor IDIC is introduced as the third component to fabricate as‐cast nonfullerene ternary devices to achieve absorption and morphology control. Addition of IDIC not only mixes well with TOBDT but modulates the morphology of the blend film, which helps to balance the charge transport properties and reduce the photovoltage loss of ternary devices. All these contribute to synergetic improvement of Jsc, Voc, and fill factor parameters, leading to a power conversion efficiency of 14.0% for the as‐cast fullerene‐free ternary device.  相似文献   

4.
The vast majority of ternary organic solar cells are obtained by simply fabricating bulk heterojunction (BHJ) active layers. Due to the inappropriate distribution of donors and acceptors in the vertical direction, a new method by fabricating pseudoplanar heterojunction (PPHJ) ternary organic solar cells is proposed to better modulate the morphology of active layer. The pseudoplanar heterojunction ternary organic solar cells (P‐ternary) are fabricated by a sequential solution treatment technique, in which the donor and acceptor mixture blends are sequentially spin‐coated. As a consequence, a higher power conversion efficiency (PCE) of 14.2% is achieved with a Voc of 0.79 V, Jsc of 25.6 mA cm?2, and fill factor (FF) of 69.8% compared with the ternary BHJ system of 13.8%. At the same time, the alloyed acceptor is likely formed between two the acceptors through a series of in‐depth explorations. This work suggests that nonfullerene alloyed acceptor may have great potential to realize effective P‐ternary organic solar cells.  相似文献   

5.
Ternary organic photovoltaic (OPV) devices with multiple light‐absorbing active materials have emerged as an efficient strategy for realizing further improvements in the power conversion efficiency (PCE) without building complex multijunction structures. However, the third component often acts as recombination centers and, hence, the optimization of ternary blend morphology poses a major challenge to improving the PCE of these devices. In this work, the performance of OPVs is enhanced through the morphological modification of nonfullerene acceptor (NFA)‐containing binary active layers. This modification is achieved by incorporating fullerenes into the layers. The uniformly dispersed fullerenes are sufficiently continuous and successfully mediate the ordering of NFA without charge or energy transfer. Owing to the simultaneous improvement in the charge generation and extraction, the PCE (12.1%) of these parallel‐linked ternary devices is considerably higher than those of the corresponding binary devices (9.95% and 7.78%). Moreover, the additional energy loss of the ternary device is minimized, compared with that of the NFA‐based binary device, due to the judicious control of the effective donor:acceptor composition of the ternary blends.  相似文献   

6.
The development of nonfullerene acceptor materials applicable to organic photovoltaics (OPVs) has attracted considerable attention for the achievement of a high power conversion efficiency (PCE) in recent years. However, it is still challenging due to the insufficiency of both the variety of effective electron‐deficient units and certain guidelines for the design of such materials. This work focusses on naphtho[1,2‐c:5,6‐c′]bis[1,2,5]thiadiazole (NTz) as a key electron‐deficient unit. Therefore, a new electron‐accepting π‐conjugated compound (NTz‐Np), whose structure is based on the combination of NTz and the fluorene‐containing imide‐annelated terminal units (Np), is designed and synthesized. The NTz‐Np compound exhibits a narrow optical energy gap (1.73 eV), a proper energy level (?3.60 eV) of the lowest unoccupied molecular orbital, and moderate electron mobility (1.6 × 10?5 cm2 V?1 s?1), indicating that NTz‐Np has appropriate characteristics as an acceptor against poly(3‐hexylthiophene) (P3HT), a representative donor. OPV devices based on NTz‐Np under the blend with P3HT show high photovoltaic performance with a PCE of 2.81%, which is the highest class among the P3HT/nonfullerene‐based OPVs with the conventional device structure. This result indicates that NTz unit can be categorized as a potential electron‐deficient unit for the nonfullerene acceptors.  相似文献   

7.
In this work, sidechain engineering on conjugated fused‐ring acceptors for conformation locking is demonstrated as an effective molecular design strategy for high‐performance nonfullerene organic solar cells (OSCs). A novel nonfullerene acceptor (ITC6‐IC) is designed and developed by introducing long alkyl chains into the terminal electron‐donating building blocks. ITC6‐IC has achieved definite conformation with a planar structure and better solubility in common organic solvents. The weak electron‐donating hexyl upshifts the lowest unoccupied molecular orbital level of ITC6‐IC, resulting in a higher VOC in comparison to the widely used ITIC. The OSCs based on PBDB‐T:ITC6‐IC reveal a promising power conversion efficiency of 11.61% and an expected high VOC of 0.97 V. The weaker π–π stacking induced by steric hindrance affords ITC6‐IC with enhanced compatibility with polymer donors. The blend film treated with suitable thermal annealing exhibits a fibril crystallization feature with a good bicontinuous network morphology. The results indicate that the molecular design approach of ITC6‐IC can be inspirational for future development of nonfullerene acceptors for high efficiency OSCs.  相似文献   

8.
Infrared (IR) photodetection is important for light communications, military, agriculture, and related fields. Organic transistors are investigated as photodetectors. However, due to their large band gap, most organic transistors can only respond to ultraviolet and visible light. Here high performance IR phototransistors with ternary semiconductors of organic donor/acceptor complex and semiconducting single-walled carbon nanotubes (SWCNTs), without deep cooling requirements are developed. Due to both the ultralow intermolecular electronic transition energy of the complex and charge transport properties of SWCNTs, the phototransistor realizes broadband photodetection with photoresponse up to 2600 nm. Moreover, it exhibits outstanding performance under 2000 nm light with photoresponsivity of 2.75 × 106 A W−1, detectivity of 3.12 × 1014 Jones, external quantum efficiency over 108%, and high Iphoto/Idark ratio of 6.8 × 105. The device exhibits decent photoresponse to IR light even under ultra-weak light intensity of 100 nW cm−2. The response of the phototransistor to blackbody irradiation is demonstrated, which is rarely reported for organic phototransistors. Interestingly, under visible light, the device can also be employed as synaptic devices, and important basic functions are realized. This strategy provides a new guide for developing high performance IR optoelectronics based on organic transistors.  相似文献   

9.
Despite many advances toward improving the stability of organic photovoltaic devices, environmental degradation under ambient conditions remains a challenging obstacle for future application. Particularly conventional systems employing fullerene derivatives are prone to oxidize under illumination, limiting their applicability. Here, the environmental stability of the small molecule donor DRCN5T together with the fullerene acceptor PC70BM is reported. It is found that this system exhibits exceptional device stability, mainly due to almost constant short‐circuit current. By employing ultrafast femtosecond transient absorption spectroscopy, this remarkable stability is attributed to two separate mechanisms: 1) DRCN5T exhibits high intrinsic resistance toward external factors, showing no signs of deterioration. 2) The highly sensitive PC70BM is stabilized against degradation by the presence of DRCN5T through ultrafast, long‐range energy transfer to the donor, rapidly quenching the fullerene excited states which are otherwise precursors for chemical oxidation. It is proposed that this photoprotective mechanism be utilized to improve the device stability of other systems, including nonfullerene acceptors and ternary blends.  相似文献   

10.
Material design of guest acceptor is always a big challenge for improving the efficiency of ternary organic solar cells (OSCs). Here, a pair of isomeric nonfullerene acceptors based on quinoxaline core, Qx–p-C7H8O and Qx–m-C7H8O, is designed and synthesized. By moving the alkoxy chain attached on side phenyl from meta-position to para-position, both π–π stacking distance and crystallinity are enhanced simultaneously. They obtain the uplifted lowest unoccupied molecular orbital level. Compared to Qx–m-C7H8O, Qx–p-C7H8O exhibits wider absorption spectrum and higher extinction coefficient. Using D18-Cl:N3 as host materials, the addition of guest acceptor Qx–p-C7H8O significantly improves the power conversion efficiency (PCE) from 17.61% to 18.49% because of higher open-circuit voltage (0.875 V) and short-circuit current density (27.85 mA cm−2). This can be attributed to the faster exciton dissociation, more balanced carrier mobility, fine fiber morphology, and lower energy loss in the ternary devices. However, Qx–m-C7H8O-based ternary device achieves relatively low PCE of 17.17% because this device shows extremely low electron mobility. The results indicate that molecular stacking, film morphology, etc., can be effectively modulated by fine-tuning the side chains of guest materials, which may be an effective design rule for further improving the PCE of OSCs.  相似文献   

11.
Fabricating high‐efficient electron transporting interfacial layers (ETLs) with isotropic features is highly desired for all‐directional electron transfer/collection from an anisotropic active layer, achieving excellent power conversion efficiency (PCEs) on nonfullerene acceptor (NFA) organic solar cells (OSCs). The complicated synthesis and cost‐consumption in exploring versatile materials arouse great interest in the development of binary‐doping interlayers without phase separation and flexible manipulation. Herein, for the first time, a novel cathode interfacial layer based on biomass‐derived demethylated kraft lignin (DMeKL) is proposed. Features of multiple phenolic‐hydroxyl (PhOH) and uniform‐distributed render DMeKL to exhibit an excellent bonding capacity with amino terminal substituted perylene diiminde (PDIN), and successfully form a high‐efficient isotropic electron transfer 3D network. Synchronously, secondary bonds completely modify conjugate‐blocked linkages of DMeKL, significantly enhance the electron transporting performance on cross‐section and vertical‐sections, and repair the contact of PDIN with active layer. The DMeKL/PDIN‐based 3D‐network exhibits well‐matched work function (WF) (–4.34 eV) with cathode (–4.30 eV) and energy level of electron acceptor (–4.11 eV). DMeKL/PDIN‐based NFAs‐OSC shows excellent short‐circuit current density (26.61 mA cm–2) and PCE (16.02%) beyond the classic PDIN‐based NFA‐OSC (25.64 mA cm–2, 15.41%), which is the highest PCEs among biomaterials interlayers. The results supply a novel method to achieve high‐efficient cathode interlayer for NFAs‐OSCs.  相似文献   

12.
Electron transport materials (ETMs) play a significant role in perovskite solar cells (PSCs). However, conventional solution processable organic ETMs are mainly restricted to fullerene derivatives and it is challenging to obtain nonfullerene ETMs with satisfactory properties. In this work, a new organic semiconductor SPS‐4F is synthesized by utilizing the classical spiro[fluorine‐9′9‐thioxanthene] unit to construct a π‐extended core. Although spiro is normally used in hole transport materials, the new spiro derivative SPS‐4F is successfully used as an ETM in inverted PSCs with power conversion efficiency over 20%. In addition, SPS‐4F can strongly coordinate with MAPbI3 perovskite and lead to efficient surface trap passivation. The resultant PSCs exhibit excellent stability in air because of the hydrophobic property of SPS‐4F. This work opens up opportunities to obtain a new family of ETMs based on spiro and paves a way to the fabrication of high‐performance PSCs with low cost.  相似文献   

13.
Lead‐free perovskite materials are exhibiting bright application prospects in photodetectors (PDs) owing to their low toxicity compared with traditional lead perovskites. Unfortunately, their photoelectric performance is constrained by the relatively low charge conductivity and poor stability. In this work, photoresponsive transistors based on stable lead‐free bismuth perovskites CsBi3I10 and single‐walled carbon nanotubes (SWCNTs) are first reported. The SWCNTs significantly strengthen the dissociation and transportation of the photogenerated charge carriers, which lead to dramatically improved photoresponsivity, while a decent Ilight/Idark ratio over 102 can be maintained with gate modulation. The devices exhibit high photoresponsivity (6.0 × 104 A W?1), photodetectivity (2.46 × 1014 jones), and external quantum efficiency (1.66 × 105%), which are among the best reported results in lead‐free perovskite PDs. Furthermore, the excellent stability over many other lead‐free perovskite PDs is demonstrated over 500 h of testing. More interestingly, the device also shows the application potential as a light‐stimulated synapse and its synaptic behaviors are demonstrated. In summary, the lead‐free bismuth perovskite‐based hybrid phototransistors with multifunctional performance of photodetection and light‐stimulated synapse are first demonstrated in this work.  相似文献   

14.
Two novel wide bandgap copolymers based on quinoxalino[6,5‐f]quinoxaline (NQx) acceptor block, PBDT–NQx and PBDTS–NQx, are successfully synthesized for efficient nonfullerene polymer solar cells (PSCs). The attached conjugated side chains on both benzodithiophene (BDT) and NQx endow the resulting copolymers with low‐lying highest occupied molecular orbital (HOMO) levels. The sulfur atom insertion further reduces the HOMO level of PBDTS–NQx to ?5.31 eV, contributing to a high open‐circuit voltage, V oc, of 0.91 V. Conjugated n ‐octylthienyl side chains attached on the NQx skeletons also significantly improve the π–π* transitions and optical absorptions of the copolymers in the region of short wavelengths, which induce a good complementary absorption when blending with the low bandgap small molecular acceptor of 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene. The wide absorption range makes the active blends absorb more photons, giving rise to a high short‐circuit current density, J sc, value of 15.62 mA cm?2. The sulfur atom insertion also enhances the crystallinity of PBDTS–NQx and presents its blend film with a favorable nanophase separation, resulting in improved J sc and fill factor (FF) values with a high power conversion efficiency of 11.47%. This work not only provides a new fused ring acceptor block (NQx) for constructing high‐performance wide bandgap copolymers but also provides the NQx‐based copolymers for achieving highly efficient nonfullerene PSCs.  相似文献   

15.
Organic materials for near‐infrared (NIR) photodetection are in the focus for developing organic optical‐sensing devices. The choice of materials for bulk‐type organic photodetectors is limited due to effects like high nonradiative recombination rates for low‐gap materials. Here, an organic Schottky barrier photodetector with an integrated plasmonic nanohole electrode is proposed, enabling structure‐dependent, sub‐bandgap photodetection in the NIR. Photons are detected via internal photoemission (IPE) process over a metal/organic semiconductor Schottky barrier. The efficiency of IPE is improved by exciting localized surface plasmon resonances, which are further enhanced by coupling to an out‐of‐plane Fabry–Pérot cavity within the metal/organic/metal device configuration. The device allows large on/off ratio (>1000) and the selective control of individual pixels by modulating the Schottky barrier height. The concept opens up new design and application possibilities for organic NIR photodetectors.  相似文献   

16.
To further elevate the power conversion efficiency (PCE) of organic solar cells (OSCs), ternary strategy is one of the most efficient methods via simply incorporating a suitable third component. Here, a nonfullerene small molecule acceptor MOITIC was incorporated into the state-of-art PM6:Y6 binary system to further enhance the photovoltaic performance. Detailed investigation revealed that MOITIC exhibited a good miscibility and compatibility with Y6, forming alloy-like acceptors in the ternary blends. The alloy-like phase promoted the phase separation and optimized the morphology of ternary blend, which afforded higher and more balanced carrier mobility and reduced charge recombination in devices. Moreover, the larger energy offset between PM6 and MOITIC:Y6 acceptor alloy is beneficial to enhance open-circuit voltage (Voc) of corresponding devices. As a consequence, the optimized ternary OSC (PM6:Y6:MOITIC = 1:1:0.1) showed a significantly increased PCE of 17.1% with simultaneously enhanced Voc of 0.882 V, short-circuit current density (Jsc) of 25.6 mA cm−2, and fill factor (FF) of 75.7%, which has about 9% enhancement compared to the control binary PM6:Y6 (15.7%). In addition, the optimized ternary device exhibited better stability. This work indicates that ternary strategy via combining two compatible small molecule acceptors is effective to simultaneously improve the efficiency and stability of OSCs.  相似文献   

17.
The synthesis, optoelectronic, and photovoltaic properties of novel acceptor–donor–acceptor (A–D–A) based π‐conjugated functional molecules 1 – 3, comprising a planar S,N‐heteropentacene as central donor substituted with various terminal acceptor units, such as 1,1‐dicyanovinylene (DCV) and 1‐(1,1‐dicyanomethylene)‐cyclohex‐2‐ene (DCC), are reported. The structural variation of the end groups provides molecules 1 – 3 with gradually increased π‐conjugation due to a rising number of double bonds, which comes from the DCC unit(s). From optoelectronic investigation, structure–property relationships are deduced and the novel A–D–A heteropentacenes 1 – 3 are implemented as photoactive donor component in solution‐processed bulk heterojunction solar cells together with [6,6]‐phenyl‐C61‐butyric acid methyl ester as acceptor. The structural variation in the S,N‐heteropentacenes leads to clear trends in the photovoltaic performance and power conversion efficiencies of up to 4.9% are achieved. Furthermore, due to extension of the double bonds a clear trade‐off between the open circuit voltage (V OC) and the short circuit current density (J SC) values is observed. The role of additives on the optimization of the nanoscale morphology and device performance is investigated. The findings presented herein demonstrate that depending on the types of materials the additive may have significantly different effects on the active layer morphology and the device performance.  相似文献   

18.
Ternary polymer solar cells (PSCs) are one of the most promising device architectures that maintains the simplicity of single‐junction devices and provides an important platform to better tailor the multiple performance parameters of PSCs. Herein, a ternary PSC system is reported employing a wide bandgap polymeric donor (PBTA‐PS) and two small molecular nonfullerene acceptors (labeled as LA1 and 6TIC). LA1 and 6TIC keep not only well‐matched absorption profiles but also the rational crystallization properties. As a result, the optimal ternary PSC delivers a state of the art power conversion efficiency (PCE) of 14.24%, over 40% higher than the two binary devices, resulting from the prominently increased short‐circuit current density (Jsc) of 22.33 mA cm?2, moderate open‐circuit voltage (Voc) of 0.84 V, and a superior fill factor approaching 76%. Notably, the outstanding PCE of the ternary PSC ranks one of the best among the reported ternary solar cells. The greatly improved performance of ternary PSCs mainly derives from combining the complementary properties such as absorption and crystallinity. This work highlights the great importance of the rational design of matched acceptors toward highly efficient ternary PSCs.  相似文献   

19.
Polarized photodetection based on anisotropic two-dimensional materials display promising prospects for practical application in optical communication and optoelectronic fields. However, most of the reported polarized photodetection are limited by the lack of valid tunable strategy and low linear dichroism ratio. A peculiar noble metal dichalcogenide—PdSe2 with a puckered pentagonal structure and abnormal linear dichroism conversion—potentially removes these restrictions and is demonstrated in this study. Herein, azimuth-dependent reflectance difference microscopy combined with anisotropic electrical transport measurements indicate strong in-plane anisotropic optical and electrical properties of two-dimensional PdSe2. Remarkably, the typical polarization-resolved photodetection exhibits anisotropic photodetection characteristics with a dichroic ratio up to ≈1.8 at 532 nm and ≈2.2 at 369 nm, and their dominant polarization orientation differs by 90° corresponding to the a-axis and b-axis, respectively. The unique orientation selection behavior in polarization-dependent photodetection can be attributed to the intrinsic linear dichroism conversion. The results make 2D PdSe2 a promising platform for investigating anisotropic structure–property correlations and integrated optical applications for novel polarization-sensitive photodetection.  相似文献   

20.
A new method to synthesize an electron‐rich building block cyclopentadithienothiophene (9H‐thieno‐[3,2‐b]thieno[2″,3″:4′,5′]thieno[2′,3′:3,4]cyclopenta[1,2‐d]thiophene, CDTT) via a facile aromatic extension strategy is reported. By combining CDTT with 1,1‐dicyanomethylene‐3‐indanone endgroups, a promising nonfullerene small molecule acceptor (CDTTIC) is prepared. As‐cast, single‐junction nonfullerene organic solar cells based on PFBDB‐T: CDTTIC blends exhibit very high short‐circuit currents up to 26.2 mA cm?2 in combination with power conversion efficiencies over 11% without any additional processing treatments. The high photocurrent results from the near‐infrared absorption of the CDTTIC acceptor and the well‐intermixed blend morphology of polymer donor PFBDB‐T and CDTTIC. This work demonstrates a useful fused ring extension strategy and promising solar cell results, indicating the great potential of the CDTT derivatives as electron‐rich building blocks for constructing high‐performance small molecule acceptors in organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号