首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Se‐doped Mg3.2Sb1.5Bi0.5‐based thermoelectric materials are revisited in this study. An increased ZT value ≈ 1.4 at about 723 K is obtained in Mg3.2Sb1.5Bi0.49Se0.01 with optimized carrier concentration ≈ 1.9 × 1019 cm?3. Based on this composition, Co and Mn are incorporated for the manipulation of the carrier scattering mechanism, which are beneficial to the dramatically enhanced electrical conductivity and power factor around room temperature range. Combined with the lowered lattice thermal conductivity due to the introduction of effective phonon scattering centers in Se&Mn‐codoped sample, a highest room temperature ZT value ≈ 0.63 and a peak ZT value ≈ 1.70 at 623 K are achieved for Mg3.15Mn0.05Sb1.5Bi0.49Se0.01, leading to a high average ZT ≈ 1.33 from 323 to 673 K. In particular, a remarkable average ZT ≈ 1.18 between the temperature of 323 and 523 K is achieved, suggesting the competitive substitution for the commercialized n‐type Bi2Te3‐based thermoelectric materials.  相似文献   

2.
Bismuth-telluride-based alloy is the sole thermoelectric candidate for commercial thermoelectric application in low-grade waste heat harvest near room temperature, but the sharp drop of thermoelectric properties at higher temperature and weak mechanical strength in zone-melted material are the main obstacles to its wide development for power generation. Herein, an effective approach is reported to improve the thermoelectric performance of p-type Bi0.42Sb1.58Te3 hot-pressed sample by incorporating Ag5SbSe4. A peak ZT of 1.40 at 375 K and a high average ZT of 1.25 between 300 and 500 K are achieved. Such outstanding thermoelectric performance originates from the synergistic effects of improved density-of-states effective mass, reduced bipolar thermal conductivity by the boosted carrier concentration, and suppressed lattice thermal conductivity by the induced phonon scattering centers including substitute point defects, dislocations, stress–strain clusters, and grain boundaries. Comprised of the p-type Bi0.42Sb1.58Te3 + 0.10 wt% Ag5SbSe4 and zone-melted n-type Bi2Te2.7Se0.3, the thermoelectric module exhibits a high conversion efficiency of 6.5% at a temperature gradient of 200 K, indicating promising applications for low-grade heat harvest near room temperature.  相似文献   

3.
Developing high‐performance thermoelectric materials is one of the crucial aspects for direct thermal‐to‐electric energy conversion. Herein, atomic scale point defect engineering is introduced as a new strategy to simultaneously optimize the electrical properties and lattice thermal conductivity of thermoelectric materials, and (Bi,Sb)2(Te,Se)3 thermoelectric solid solutions are selected as a paradigm to demonstrate the applicability of this new approach. Intrinsic point defects play an important role in enhancing the thermoelectric properties. Antisite defects and donor‐like effects are engineered in this system by tuning the formation energy of point defects and hot deformation. As a result, a record value of the figure of merit ZT of ≈1.2 at 445 K is obtained for n‐type polycrystalline Bi2Te2.3Se0.7 alloys, and a high ZT value of ≈1.3 at 380 K is achieved for p‐type polycrystalline Bi0.3Sb1.7Te3 alloys, both values being higher than those of commercial zone‐melted ingots. These results demonstrate the promise of point defect engineering as a new strategy to optimize thermoelectric properties.  相似文献   

4.
We present the effects of In4Se3 addition on thermoelectric properties of n-type Bi2Te2.7Se0.3. In this study, polycrystalline (In4Se3) x -(Bi2Te2.7Se0.3)1?x pellets were prepared by mechanical alloying followed by spark plasma sintering (SPS). The thermoelectric properties such as Seebeck coefficient and electrical and thermal conductivities were measured in the temperature range of 300 K to 500 K. Addition of In4Se3 into Bi2Te2.7Se0.3 resulted in segregation of In4Se3 phase within Bi2Te2.7Se0.3 matrix. The Seebeck coefficient of the (In4Se3) x -(Bi2Te2.7Se0.3)1?x samples exhibited lower values compared with that of pure Bi2Te2.7Se0.3 phase. This reduction of Seebeck coefficient in n-type (In4Se3) x -(Bi2Te2.7Se0.3)1?x is attributed to the formation of unwanted p-type phases by interdiffusion through the interface between (In4Se3) x and (Bi2Te2.7Se0.3)1?x as well as consequently formed Te-deficient matrix. However, the decrease in electrical resistivity and thermal conductivity with addition of In4Se3 leads to an enhanced thermoelectric figure of merit (ZT) at a temperature range over 450 K: a maximum ZT of 1.0 is achieved for the n-type (In4Se3)0.03-(Bi2Te2.7Se0.3)0.97 sample at 500 K.  相似文献   

5.
n-Type Bi2Te3 nanocomposites with enhanced figure of merit, ZT, were fabricated by a simple, high-throughput method of mixing nanostructured Bi2Te3 particles obtained through melt spinning with micron-sized particles. Moderately high power factors were retained, while the thermal conductivity of the nanocomposites was found to decrease with increasing weight percent of nanoinclusions. The peak ZT values for all the nanocomposites were above 1.1, and the maximum shifted to higher temperature with increasing amount of nanoinclusions. A maximum ZT of 1.18 at 42°C was obtained for the 10 wt.% nanocomposite, which is a 43% increase over the bulk sample at the same temperature. This is the highest ZT reported for n-type Bi2Te3 binary material, and higher ZT values are expected if state-of-the-art Bi2Te3−x Se x materials are used.  相似文献   

6.
A series of Bi2(Se0.4Te0.6)3 compounds were synthesized by a rapid route of melt spinning (MS) combined with a subsequent spark plasma sintering (SPS) process. Measurements of the Seebeck coefficient, electrical conductivity, and thermal conductivity were performed over the temperature range from 300 K to 520 K. The measurement results showed that the cooling rate of melt spinning had a significant impact on the transport properties of electrons and phonons, effectively enhancing the thermoelectric properties of the compounds. The maximum ZT value reached 0.93 at 460 K for the sample prepared with the highest cooling rate, and infrared spectrum measurement results showed that the compound with lower tellurium content, Bi2(Se0.4Te0.6)3, possesses a larger optical forbidden gap (E g) compared with the traditional n-type zone-melted material with formula Bi2(Se0.07Te0.93)3. Our work provides a new approach to develop low-tellurium-bearing Bi2Te3-based compounds with good thermoelectric performance.  相似文献   

7.
A series of thermoelectric nanocomposite samples were prepared by integrating Bi2Se3 nanoparticles into a bulk Bi2Te3 matrix. Primarily, spherical Bi2Se3 nanoparticles with diameter of ~30 nm were synthesized by combining bismuth acetate with elemental Te in oleic acid solution. Bi2Te3-based nanocomposite samples were prepared by consolidating the appropriate quantity of Bi2Se3 nanoparticles with the starting elements (Bi and Te) using typical solid-state synthetic reactions. The microstructure and composition of the Bi2Te3-based nanocomposites, as well as the effects of the Bi2Se3 nanoparticles on their thermoelectric properties, are investigated. Transmission electron microscopy observation of the Bi2Te3-based nanocomposites reveals two types of interface between the constituent materials, i.e., coherent and incoherent, depending on the Bi2Se3 concentration. The Bi2Se3 nanoparticles in the Bi2Te3 matrix act as scattering centers for a wider range of phonon frequencies, thereby reducing the thermal conductivity. As a result, the maximum ZT value of 0.75 is obtained for the Bi2Te3 nanocomposite with 10 wt.% Bi2Se3 nanoparticles at room temperature. It is clear that the reduction in the thermal conductivity plays a central role in the enhancement of the ZT value.  相似文献   

8.
The possibility of using an n-type Bi2?x SbxTe3 solid solution in thermoelectric refrigerators at T<200 K is considered. It is shown that, if the material under consideration is optimized for the above temperature region, the temperature dependence of the Seebeck coefficient α becomes less pronounced, and the crystal-lattice thermal conductivity κL decreases as compared to what is observed in a conventional n-Bi2Te3?y Sey solid solution. These factors and a high mobility of charge carriers μ0 bring about an increase in the parameter β ~ ZT, where Z is the thermoelectric efficiency.  相似文献   

9.
In this research, n-type (Bi2Te3)1?x (Bi2Se3) x -based thermoelectric (TE) materials were produced through a gas atomization process, and subsequently hot extruded with an extrusion ratio of 10:1 at 400 °C. The effect of chemical composition on TE properties was investigated. The microstructure of all extruded bars showed a homogeneous and fine distribution of grains due to the dynamic recrystallization during the hot extrusion process. With increasing Bi2Te3 content, from 0.85 to 0.90, both electrical resistivity and Seebeck coefficient values were increased. The maximum figure of merit (ZT) 0.673 was obtained at room temperature for (Bi2Te3)0.90(Bi2Se3)0.10 alloys due to them exhibiting higher seebeck coefficient and lower thermal conductivity than other compositions.  相似文献   

10.
Considerable research effort has gone into improving the performance of traditional thermoelectric materials such as Bi2?x Sb x Te3 through a variety of nanostructuring approaches. Bottom-up, chemical approaches have the potential to produce very small nanoparticles (?100?nm) with narrow size distribution and controlled shape. For this study, nanocrystalline powder of Bi0.5Sb1.5Te3 was synthesized using a ligand-assisted chemical method, and consolidated into pellets with cold pressing followed by sintering in Ar atmosphere. The thermoelectric transport properties were measured from 7?K to 300?K as a function of sintering temperature. Sintering is found to increase ZT and to move the maximum in ZT to lower temperatures due to a reduction in the free charge concentration. Hall mobility studies indicate that sintering increases the electron mean free path more than it increases the phonon mean free path up to sintering temperature of 598?K. A maximum ZT of 0.42 was measured at temperature of 275?K.  相似文献   

11.
Thermoelectric Bi2Te3 based bulk materials are widely used for solid‐state refrigeration and power‐generation at room temperature. For low‐dimensional and nanostructured thermoelectric materials an increase of the thermoelectric figure of merit ZT is predicted due to quantum confinement and phonon scattering at interfaces. Therefore, the fabrication of Bi2Te3 nanowires, thin films, and nanostructured bulk materials has become an important and active field of research. Stoichiometric Bi2Te3 nanowires with diameters of 50–80 nm and a length of 56 μm are grown by a potential‐pulsed electrochemical deposition in a nanostructured Al2O3 matrix. By transmission electron microscopy (TEM), dark‐field images together with electron diffraction reveal single‐crystalline wires, no grain boundaries can be detected. The stoichiometry control of the wires by high‐accuracy, quantitative enegy‐dispersive X‐ray spectroscopy (EDX) in the TEM instrument is of paramount importance for successfully implementing the growth technology. Combined electron diffraction and EDX spectroscopy in the TEM unambiguously prove the correct crystal structure and stoichiometry of the Bi2Te3 nanowires. X‐ray and electron diffraction reveal growth along the [110] and [210] directions and the c axis of the Bi2Te3 structure lies perpendicular to the wire axis. For the first time single crystalline, stoichiometric Bi2Te3 nanowires are grown that allow transport in the basal plane without being affected by grain boundaries.  相似文献   

12.
Thermoelectric materials have potential applications in energy harvesting and electronic cooling devices, and bismuth antimony telluride (BiSbTe) alloys are the state‐of‐the‐art thermoelectric materials that have been widely used for several decades. It is demonstrated that mixing SiC nanoparticles into the BiSbTe matrix effectively enhances its thermoelectric properties; a high dimensionless figure of merit (ZT) value of up to 1.33 at 373 K is obtained in Bi0.3Sb1.7Te3 incorporated with only 0.4 vol% SiC nanoparticles. SiC nanoinclusions possessing coherent interfaces with the Bi0.3Sb1.7Te3 matrix can increase the Seebeck coefficient while increasing the electrical conductivity, in addition to its effect of reducing lattice thermal conductivity by enhancing phonon scattering. Nano‐SiC dispersion further endows the BiSbTe alloys with better mechanical properties, which are favorable for practical applications and device fabrication.  相似文献   

13.
Since Bi2Te3 and Bi2Se3 have the same crystal structure, they form a homogeneous solid solution. Therefore, the thermal conductivity of the solid solution can be reduced by phonon scattering. The thermoelectric figure of merit can be improved by controlling the carrier concentration through doping. In this study, Bi2Te2.85Se0.15:D m (D: dopants such as I, Cu, Ag, Ni, Zn) solid solutions were prepared by encapsulated melting and hot pressing. All specimens exhibited n-type conduction in the measured temperature range (323 K to 523 K), and their electrical conductivities decreased slightly with increasing temperature. The undoped solid solution showed a carrier concentration of 7.37 × 1019 cm?3, power factor of 2.1 mW m?1 K?1, and figure of merit of 0.56 at 323 K. The figure of merit (ZT) was improved due to the increased power factor by I, Cu, and Ag dopings, and maximum ZT values were obtained as 0.76 at 323 K for Bi2Te2.85Se0.15:Cu0.01 and 0.90 at 423 K for Bi2Te2.85Se0.15:I0.005. However, the thermoelectric properties of Ni- and Zn-doped solid solutions were not enhanced.  相似文献   

14.
Introducing nanoinclusions in thermoelectric (TE) materials is expected to lower the lattice thermal conductivity by intensifying the phonon scattering effect, thus enhancing their TE figure of merit ZT. We report a novel method of fabricating Bi0.5Sb1.5Te3 nanocomposite with nanoscale metal particles by using metal acetate precursor, which is low cost and facile to scale up for mass production. Ag and Cu particles of ??40?nm were successfully near-monodispersed at grain boundaries of Bi0.5Sb1.5Te3 matrix. The well-dispersed metal nanoparticles reduce the lattice thermal conductivity extensively, while enhancing the power factor. Consequently, ZT was enhanced by more than 25% near room temperature and by more than 300% at 520?K compared with a Bi0.5Sb1.5Te3 reference sample. The peak ZT of 1.35 was achieved at 400?K for 0.1?wt.% Cu-decorated Bi0.5Sb1.5Te3.  相似文献   

15.
Sb‐doped and GeTe‐alloyed n‐type thermoelectric materials that show an excellent figure of merit ZT in the intermediate temperature range (400–800 K) are reported. The synergistic effect of favorable changes to the band structure resulting in high Seebeck coefficient and enhanced phonon scattering by point defects and nanoscale precipitates resulting in reduction of thermal conductivity are demonstrated. The samples can be tuned as single‐phase solid solution (SS) or two‐phase system with nanoscale precipitates (Nano) based on the annealing processes. The GeTe alloying results in band structure modification by widening the bandgap and increasing the density‐of‐states effective mass of PbTe, resulting in significantly enhanced Seebeck coefficients. The nanoscale precipitates can improve the power factor in the low temperature range and further reduce the lattice thermal conductivity (κlat). Specifically, the Seebeck coefficient of Pb0.988Sb0.012Te–13%GeTe–Nano approaches ?280 µV K?1 at 673 K with a low κlat of 0.56 W m?1 K?1 at 573 K. Consequently, a peak ZT value of 1.38 is achieved at 623 K. Moreover, a high average ZTavg value of ≈1.04 is obtained in the temperature range from 300 to 773 K for n‐type Pb0.988Sb0.012Te–13%GeTe–Nano.  相似文献   

16.
Field-activated pressure-assisted sintering (FAPAS) was applied to sinter Bi1.2Sb4.8Te9 thermoelectric materials under different conditions, including no-current sintering (NCS), low-density current sintering (LCS), and high-density current sintering (HCS). The effect of the current density on the final thermoelectric performance of the products was investigated. Applying a higher-density electric current and shorter dwell time can improve the thermoelectric performance of the sample by increasing its electric conductivity and decreasing its thermal conductivity. The maximum figure of merit ZT values of the NCS, LCS, and HCS samples were 0.46, 0.48, and 0.57, respectively. Therefore, applying a high-density electric current in the sintering process may be an effective way to obtain Bi1.2Sb4.8Te9 thermoelectric material with high ZT value.  相似文献   

17.
Thermoelectric thin films of the ternary compounds (Bi x Sb1?x )2Te3 and Bi2(Te1?y Se y )3 were synthesized using potentiostatic electrochemical deposition on gold-coated silicon substrates from aqueous acidic solutions at room temperature. The surface morphology, elemental composition, and crystal structure of the deposited films were studied and correlated with preparation conditions. The thermoelectric properties of (Bi x Sb1?x )2Te3 and Bi2(Te1?y Se y )3 films, i.e., Seebeck coefficient and electrical resistivity, were measured after transferring the films to a nonconductive epoxy support. (Bi x Sb1?x )2Te3 thin films showed p-type semiconductivity, and the highest power factor was obtained for film deposited at a relatively large negative potential with composition close to Bi0.5Sb1.5Te3. In addition, Bi2(Te1?y Se y )3 thin films showed n-type semiconductivity, and the highest power factor was obtained for film deposited at a relatively small negative potential, having composition close to Bi2Te2.7Se0.3. In contrast to Bi2Te2.7Se0.3 thin films, an annealing treatment was required for Bi0.5Sb1.5Te3 thin films to achieve the same magnitude of power factor as Bi2Te2.7Se0.3. Therefore, Bi2Te2.7Se0.3 thin films appear to be good candidates for multilayer preparation using electrochemical deposition, but the morphology of the films must be further improved.  相似文献   

18.
Bi x Sb2−x Te3 bulk alloys are known as the best p-type thermoelectric materials near room temperature. In this work, single-phase Bi x Sb2−x Te3 (x = 0.2, 0.25, 0.3, 0.34, 0.38, 0.42, 0.46, and 0.5) alloys were prepared by spark plasma sintering (SPS) using mechanical alloying (MA)-derived powders. A small amount (0.1 vol.%) of SiC nanoparticles was added to improve the mechanical properties and to reduce the thermal conductivity of the alloys. The electrical resistivity decreases significantly with increasing ratio of Sb to Bi in spite of the weaker decreasing trend in Seebeck coefficient, whereby the power factor at 323 K reaches 3.14 × 10−3 W/mK2 for a sample with x = 0.3, obviously higher than that at x = 0.5 (2.27 × 10−3 W/mK2), a composition commonly used for ingots. Higher thermal conductivities at low temperatures are obtained at the compositions with lower x values, but they tend to decrease with temperature. As a result, higher ZT values are obtained for Bi0.3Sb1.7Te3, with a maximum ZT value of 1.23 at 423 K, about twice the ZT value (about 0.6) of Bi0.5Sb1.5Te3 at the same temperature.  相似文献   

19.
GeTe is an interesting material presenting both spontaneous polarization (ferroelectrics) and outstanding electrical conductivity (ideal for thermoelectrics). Pristine GeTe exhibits classic 71° and 109° submicron ferroelectric domains, and near unity thermoelectric figure of merit ZT at 773 K. In this work, it is demonstrated that Bi2Te3 alloying in GeTe lattice can introduce vast Ge vacancies which can further evolve into nanoscale van der Waals gaps upon proper heat treatment, and that these vacancy gaps can induce 180° nanoscale ferroelectric domain boundaries. These microstructures eventually become a hierarchical ferroelectric domain structure, with size varying from submicron to nanoscale and polarization from 71°, 109° to 180°. The establishment of hierarchical ferroelectric domain structure, together with the nanoscale Ge vacancy van der Waals gaps, has profound effects on the electrical and thermal transport properties, resulting in a striking peak thermoelectric ZT ≈ 2.4 at 773 K. These findings might provide an alternative conception for thermoelectric optimization via microstructure modulation.  相似文献   

20.
The efficient thermoelectric materials (GeTe)0.85?x (Mn0.6Sn0.4Te)0.15(Bi2Te3) x (0 ≤ x ≤ 0.05), in which Bi2Te3 is nanopowder, were prepared by hot pressing. The effect of adding neutral nano-Bi2Te3 content on the thermoelectric properties of germanium telluride was investigated. With increasing x, the thermal conductivity of the prepared samples decreased significantly and the Seebeck coefficient declined slightly, while there was no obvious change in electrical conductivity. In both electrical conductivity and Seebeck coefficient curves at different x values, there are inflection points around 600 K. The maximum dimensionless figure of merit ZT of the prepared materials is 1.54, attained in the temperature range from 700 K to 750 K for x = 0.03. The x-ray diffraction (XRD) pattern shows that Bi2Te3 has been alloyed into the GeTe-MnTe-SnTe alloy, which is consistent with the high-resolution scanning electron microscopy (HRSEM) images. Adding nano-Bi2Te3 to GeTe-based materials could also increase their performance stability at high temperature as a result of decreasing the phase-transition temperature T c.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号