首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of highly active and stable earth‐abundant catalysts to reduce or eliminate the reliance on noble‐metal based ones in green and sustainable (electro)chemical processes is nowadays of great interest. Here, N‐, O‐, and S‐tridoped carbon‐encapsulated Co9S8 (Co9S8@NOSC) nanomaterials are synthesized via simple pyrolysis of S‐ and Co(II)‐containing polypyrrole solid precursors, and the materials are proven to serve as noble metal‐free bifunctional electrocatalysts for water splitting in alkaline medium. The nanomaterials exhibit remarkable catalytic performances for oxygen evolution reaction in basic electrolyte, with small overpotentials, high anodic current densities, low Tafel slopes as well as very high (nearly 100%) Faradic efficiencies. Moreover, the materials are found to efficiently electrocatalyze hydrogen evolution reaction in acidic as well as basic solutions, showing high activity in both cases and maintaining good stability in alkaline medium. A two‐electrode electrolyzer assembled using the material synthesized at 900 °C (Co9S8@NOSC‐900) as an electrocatalyst at both electrodes gives current densities of 10 and 20 mA cm?2 at potentials of 1.60 and 1.74 V, respectively. The excellent electrocatalytic activity exhibited by the materials is proposed to be mainly due to the synergistic effects between the Co9S8 nanoparticles cores and the heteroatom‐doped carbon shells in the materials.  相似文献   

2.
A facile approach for the template‐free synthesis of highly active non‐noble metal based oxygen reduction reaction (ORR) electrocatalysts is presented. Porous Fe?N?C/Fe/Fe3C composite materials are obtained by pyrolysis of defined precursor mixtures of polyformamidine (PFA) and FeCl3 as nitrogen‐rich carbon and iron sources, respectively. Selection of pyrolysis temperature (700–1100 °C) and FeCl3 loading (5–30 wt%) yields materials with differing surface areas, porosity, graphitization degree, nitrogen and iron content, as well as ORR activity. While the ORR activity of Fe‐free materials is limited (i.e., synthesized from pure PFA), a huge increase in activity is observed for catalysts containing Fe, revealing the participation of the metal dopant in the construction of active electrocatalytic sites. Further activity improvement is achieved via acid‐leaching and repeated pyrolysis, a result which is attributed to the creation of new active sites located at the surface of the porous nitrogen‐doped carbon by dissolution of the Fe and Fe3C nanophases. The best performing catalyst, which was synthesized with a low Fe loading (i.e., 5 wt%) and at a pyrolysis temperature of 900 °C, exhibits high activity, excellent H2O selectivity, extended stability, in both basic and acidic media as well as a remarkable tolerance toward methanol.  相似文献   

3.
Rational design of non‐noble metal catalysts with robust and durable electrocatalytic activity for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) is extremely important for renewable energy conversion and storage, regenerative fuel cells, rechargeable metal–air batteries, water splitting etc. In this work, a unique hybrid material consisting of Fe3C and Co nanoparticles encapsulated in a nanoporous hierarchical structure of N‐doped carbon (Fe3C‐Co/NC) is fabricated for the first time via a facile template‐removal method. Such an ingenious structure shows great features: the marriage of 1D carbon nanotubes and 2D carbon nanosheets, abundant active sites resulting from various active species of Fe3C, Co, and NC, mesoporous carbon structure, and intimate integration among Fe3C, Co, and NC. As a multifunctional electrocatalyst, the Fe3C‐Co/NC hybrid exhibits excellent performance for ORR, OER, and HER, outperforming most of reported triple functional electrocatalysts. This study provides a new perspective to construct multifunctional catalysts with well‐designed structure and superior performance for clean energy conversion technologies.  相似文献   

4.
The development of cost‐effective and high‐performance electrocatalysts for the hydrogen evolution reaction (HER) is one critical step toward successful transition into a sustainable green energy era. Different from previous design strategies based on single parameter, here the necessary and sufficient conditions are proposed to develop bulk non‐noble metal oxides which are generally considered inactive toward HER in alkaline solutions: i) multiple active sites for different reaction intermediates and ii) a short reaction path created by ordered distribution and appropriate numbers of these active sites. Computational studies predict that a synergistic interplay between the ordered oxygen vacancies (at pyramidal high‐spin Co3+ sites) and the O 2p ligand holes (OLH; at metallic octahedral intermediate‐spin Co4+ sites) in RBaCo2O5.5+δ (δ = 1/4; R = lanthanides) can produce a near‐ideal HER reaction path to adsorb H2O and release H2, respectively. Experimentally, the as‐synthesized (Gd0.5La0.5)BaCo2O5.75 outperforms the state‐of‐the‐art Pt/C catalyst in many aspects. The proof‐of‐concept results reveal that the simultaneous possession of ordered oxygen vacancies and an appropriate number of OLH can realize a near‐optimal synergistic catalytic effect, which is pivotal for rational design of oxygen‐containing materials.  相似文献   

5.
Developing highly efficient and earth‐abundant electrocatalysts for the oxygen evolution reaction (OER) is significantly important for water‐splitting. Here, for the first time it is reported that the physically adsorbed metal ions (PAMI) in porous materials can be served as highly efficient OER electrocatalysts, which provides a universal PAMI method to develop electrocatalysts. This PAMI method can be applied to almost all porous supports, including graphene, carbon nanotubes, C3N4, CaCO3, and porous organic polymers and all the systems exhibit excellent OER performance. In particular, the as‐synthesized Co0.7Fe0.3CB exhibits a small overpotential of 295 mV and 350 mV at the current density of 10 mA cm?2 and 100 mA cm?2, respectively, which exceeds commercial 40 wt% IrO2/CB and most reported non‐noble metal‐based OER catalysts. Moreover, the mass activity of Co0.7Fe0.3CB reaches 643.4 A g?1 at the overpotential of 320 mV, which is nearly 4.7 times higher than that of 40 wt% IrO2/CB. In addition, the advanced ex situ and in situ synchrotron X‐ray characterizations are carried out to unravel the PAMI synthetic process. In short, this PAMI method will break the conversional understanding, i.e., the most OER catalysts are synthesized chemically, because the new PAMI method does not require any chemical synthesis, which therefore opens a new avenue for the development of OER electrocatalysts.  相似文献   

6.
Development of electrocatalysts for hydrogen evolution reaction (HER) with low overpotential and robust stability remains as one of the most serious challenges for energy conversion. Herein, a serviceable and highly active HER electrocatalyst with multilevel porous structure (Co‐Co2P nanoparticles@N, P doped carbon/reduced graphene oxides (Co‐Co2P@NPC/rGO)) is synthesized by Saccharomycete cells as template to adsorb metal ions and graphene nanosheets as separating agent to prevent aggregation, which is composed of Co‐Co2P nanoparticles with size of ≈104.7 nm embedded into carbonized Saccharomycete cells. The Saccharomycete cells provide not only carbon source to produce carbon shells, but also phosphorus source to prepare metal phosphides. In order to realize the practicability and permanent stability, the binderless and 3D electrodes composed of obtained Co‐Co2P@NPC/rGO powder are constructed, which possess a low overpotential of 61.5 mV (achieve 10 mA cm?2) and the high current density with extraordinary catalytic stability (1000 mA cm?2 for 20 h) in 0.5 m H2SO4. The preparation process is appropriate for synthesizing various metal or metal phosphide@carbon electrocatalysts. This work may provide a biological template method for rational design and fabrication of various metals or metal compounds@carbon 3D electrodes with promising applications in energy conversion and storage.  相似文献   

7.
Single‐atomic electrocatalysts (SACs) have shown great promise in electrocatalysis fields owing to their theoretical maximum atom utilization (100%). Yet still, it is far from expectation in practical applications due to entrapping within supports and blocking by aggregation. Herein, self‐supported carbon nanosheet arrays consisting of single‐atomic Co electrocatalyst (SS‐Co‐SAC) toward oxygen‐involved reaction and zinc–air batteries are reported. Impressively, the as‐synthesized SS‐Co‐SAC gives a markedly enhanced utilization of active sites (≈22.3%@2.3 wt%) as a result of single‐atomic dispersion of Co within a unique nanosheet arrays architecture, which is the largest value among other reported results. Benefiting from the high utilization of active sites, the SS‐Co‐SAC electrode exhibits outstanding electrocatalytic performance for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Notably, the turnover frequency value for ORR is determined to be ≈9.26 s?1, which stands for the highest level among noble metal‐free electrocatalysts reported previously. Moreover, as an air‐cathode for zinc–air batteries with SS‐Co‐SAC, a power density of 195.1 mW cm?2 and a robust durability are achieved. It is believed that this study would guide the future design of highly active and durable single‐atom catalysts for both fundamental research and practical applications.  相似文献   

8.
The effective transfer of strong electromagnetic field from the gold core through the coating shell represents the most significant challenge for the applications of plasmonic nanoparticles. This study applies a one‐step arc discharge method to synthesize graphitic carbon‐encapsulated gold nanoparticles (Au@G NPs) functionalized with amino groups uniformly via adding NH3 into He background gas. By tailoring the coating shell into few‐layered graphene, a strong localized surface plasmon resonance (LSPR) absorption band is achieved. The NH3 introduces H radicals to strengthen the LSPR characteristic by etching the coating graphitic shell, as well as provides dissociated NH or NH2 species to functionalize the surfaces with amino groups. With an LSPR‐based colorimetric method, it is demonstrated that trace Cu2+ ions can be detected rapidly with excellent sensitivity (as low as 10 × 10‐9m linearly) and selectivity against other metal ions (Na+, K+, Mg2+, Ca2+, Co2+, Fe2+, Cd2+, Pb2+, and Hg2+ ions) by amino‐functionalized Au@G NPs in water samples.  相似文献   

9.
Development of highly efficient and low‐cost multifunctional electrocatalysts for the oxygen evolution reaction (OER), the oxygen reduction reaction (ORR), and the hydrogen evolution reaction is urgently required for energy storage and conversion applications, such as in Zn–air batteries and water splitting to replace very expansive noble metal catalysts. Here, the new core–shell NiFe@N‐graphite electrocatalysts with excellent electrocatalytic activity and stability toward OER and ORR are reported and the Ni0.5Fe0.5@N‐graphite electrocatalyst is applied as the air electrode in Zn–air batteries. The respective liquid Zn–air battery shows a large open‐circuit potential of 1.482 V and a small charge–discharge voltage gap of 0.12 V at 10 mA cm−2, together with excellent cycling stability even after 40 h at 20 mA cm−2. Interestingly, the all‐solid‐like Zn–air battery thus derived shows a highly desired mechanical flexibility, whereby little change is observed in the voltage when bent into different angles. Using the same Ni0.5Fe0.5@N‐graphite electrode, a self‐driven water‐splitting device, which is powered by two Zn–air batteries in‐series, is constructed. The present study opens a new opportunity for the rational design of metal@N‐graphite‐based catalysts of core–shell structures for electrochemical catalysts and renewable energy applications.  相似文献   

10.
Cobalt sulfide materials have attracted enormous interest as low‐cost alternatives to noble‐metal catalysts capable of catalyzing both oxygen reduction and oxygen evolution reactions. Although recent advances have been achieved in the development of various cobalt sulfide composites to expedite their oxygen reduction reaction properties, to improve their poor oxygen evolution reaction (OER) activity is still challenging, which significantly limits their utilization. Here, the synthesis of Fe3O4‐decorated Co9S8 nanoparticles in situ grown on a reduced graphene oxide surface (Fe3O4@Co9S8/rGO) and the use of it as a remarkably active and stable OER catalyst are first reported. Loading of Fe3O4 on cobalt sulfide induces the formation of pure phase Co9S8 and highly improves the catalytic activity for OER. The composite exhibits superior OER performance with a small overpotential of 0.34 V at the current density of 10 mA cm?2 and high stability. It is believed that the electron transfer trend from Fe species to Co9S8 promotes the breaking of the Co–O bond in the stable configuration (Co–O–O superoxo group), attributing to the excellent catalytic activity. This development offers a new and effective cobalt sulfide‐based oxygen evolution electrocatalysts to replace the expensive commercial catalysts such as RuO2 or IrO2.  相似文献   

11.
Hydrogen evolution electrocatalysts can achieve sustainable hydrogen production via electrocatalytic water splitting; however, designing highly active and stable noble‐metal‐free hydrogen evolution electrocatalysts that perform as efficiently as Pt catalysts over a wide pH range is a challenging task. Herein, a new 2D cobalt phosphide/nickelcobalt phosphide (CoP/NiCoP) hybrid nanosheet network is proposed, supported on an N‐doped carbon (NC) matrix as a highly efficient and durable pH‐universal hydrogen evolution reaction (HER) electrocatalyst. It is derived from topological transformation of corresponding layer double hydroxides and graphitic carbon nitride. This 2D CoP/NiCoP/NC catalyst exhibits versatile HER electroactivity with very low overpotentials of 75, 60, and 123 mV in 1 m KOH, 0.5 m H2SO4, and 1 m PBS electrolytes, respectively, delivering a current density of 10 mA cm?2 for HER. Such impressive HER performance of the hybrid electrocatalyst is mainly attributed to the collective effects of electronic structure engineering, strong interfacial coupling between CoP and NiCoP in heterojunction, an enlarged surface area/exposed catalytic active sites due to the 2D morphology, and conductive NC support. This method is believed to provide a basis for the development of efficient 2D electrode materials with various electrochemical applications.  相似文献   

12.
The design of highly efficient, stable, and noble‐metal‐free bifunctional electrocatalysts for overall water splitting is critical but challenging. Herein, a facile and controllable synthesis strategy for nickel–cobalt bimetal phosphide nanotubes as highly efficient electrocatalysts for overall water splitting via low‐temperature phosphorization from a bimetallic metal‐organic framework (MOF‐74) precursor is reported. By optimizing the molar ratio of Co/Ni atoms in MOF‐74, a series of Cox Niy P catalysts are synthesized, and the obtained Co4Ni1P has a rare form of nanotubes that possess similar morphology to the MOF precursor and exhibit perfect dispersal of the active sites. The nanotubes show remarkable hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalytic performance in an alkaline electrolyte, affording a current density of 10 mA cm?2 at overpotentials of 129 mV for HER and 245 mV for OER, respectively. An electrolyzer with Co4Ni1P nanotubes as both the cathode and anode catalyst in alkaline solutions achieves a current density of 10 mA cm?2 at a voltage of 1.59 V, which is comparable to the integrated Pt/C and RuO2 counterparts and ranks among the best of the metal‐phosphide electrocatalysts reported to date.  相似文献   

13.
Chloride ion batteries (CIBs) are regarded as promising energy storage systems due to their large theoretical volumetric energy density, high abundance, and low cost of chloride resources. Herein, the synthesis of CoFe layered double hydroxide in the chloride form (CoFe–Cl LDH), for use as a new cathode material for CIBs, is demonstrated for the first time. The CoFe–Cl LDH exhibits a maximum capacity of 239.3 mAh g?1 and a high reversible capacity of ≈160 mAh g?1 over 100 cycles. The superb Cl? ion storage of CoFe–Cl LDH is attributed to its unique topochemical transformation property during the charge/discharge process: a reversible intercalation/deintercalation of Cl? ions in cathode with slight expansion/contraction of basal spacing, accompanied by chemical state changes in Co2+/Co3+ and Fe2+/Fe3+ couples. First‐principles calculations reveal that CoFe–Cl LDH is an excellent Cl? ion conductor, with extremely low energy barriers (0.12?0.25 eV) for Cl? diffusion. This work opens a new avenue for LDH materials as promising cathodes for anion‐type rechargeable batteries, which are regarded as formidable competitors to traditional metal ion‐shuttling batteries.  相似文献   

14.
Highly active and low‐cost non‐noble metal electrocatalysts for hydrogen oxidation reaction (HOR) are crucial for the large‐scale applications of fuel cells, which, unfortunately, are rarely documented up to now. Here, a facile one‐step strategy to fabricate W2C nanoparticles (≈3 nm) encased in N, P‐doped few layer carbon materials (W2C@N,P‐C, WNPC) as an efficient non‐noble metal HOR electrocatalyst simply by calcining the mixture of recrystallized phosphotungstic acid and dicyandiamide is reported. The obtained WNPC catalyst shows extraordinarily high HOR activities (1.03/0.91/0.84 mA cm?2 at 0.05 V vs reversible hydrogen electrode in 0.1 m HClO4/0.1 m KOH/0.1 m neutral phosphate buffered saline electrolytes, respectively), excellent durability during accelerated degradation tests for 10 000 cycles, and outstanding CO tolerance. These high performances are attributed to the uniform structure of WNPC, and more essentially, the synergistic effect among N, P, and C species which elevates the reducibility of WNPC, favoring the generation of abundant HOR active sites.  相似文献   

15.
Organic framework materials constructed by covalently linking organic building blocks into framework structures are highly regarded as paragons to precisely control the material structure at the atomic level. Herein, a direct synthesis methodology is proposed as a guidance for the bulk synthesis of organic framework materials. Framework porphyrin (POF) materials are one‐pot synthesized to demonstrate the advances of the direct synthesis methodology. The as‐synthesized POF materials are intrinsically 2D and exhibit impressive versatility in composition, structure, morphology, and function, delivering a free‐standing POF film, hybrids of POF and nanocarbon, and cobalt‐coordinated POF. When applied as electrocatalysts for oxygen reduction reaction and oxygen evolution reaction, the cobalt‐coordinated POF exhibits excellent bifunctional electrocatalytic performances comparable with noble‐metal‐based electrocatalysts. The direct synthesis methodology and resultant POF materials demonstrate the ability of controlling materials at the atomic level for energy electrocatalysis.  相似文献   

16.
Highly efficient non‐noble metal electrocatalysts are vital for metal–air batteries and fuel cells. Herein, a noble‐metal–free single‐atom Fe‐N x‐C electrocatalyst is synthesized by incorporating Fe‐Phen complexes into the nanocages in situ during the growth of ZIF‐8, followed by pyrolysis at 900 °C under inert atmosphere. Fe‐Phen species provide both Fe2+ and the organic ligand (Phen) simultaneously, which play significant roles in preparing single‐atom catalysts. The obtained Fe‐Nx‐C exhibits a half‐wave potential of 0.91 V for the oxygen reduction reaction, higher than that of commercial Pt/C (0.82 V). As a cathode catalyst for primary zinc–air batteries (ZABs), the battery shows excellent electrochemical performances in terms of the high open‐circuit voltage (OCV) of 1.51 V and a high power density of 96.4 mW cm?2. The rechargeable ZAB with Fe‐Nx‐C catalyst and the alkaline electrolyte shows a remarkable cycling performance for 300 h with an initial round‐trip efficiency of 59.6%. Furthermore, the rechargeable all‐solid‐state ZABs with the Fe‐Nx‐C catalyst show high OCV of 1.49 V, long cycle life for 120 h, and foldability. The single‐atom Fe‐Nx‐C electrocatalyst may function as a promising catalyst for various metal–air batteries and fuel cells.  相似文献   

17.
Currently, developing nonprecious‐metal catalysts to replace Pt‐based electrocatalysts in fuel cells has become a hot topic because the oxygen reduction reaction (ORR) in fuel cells often requires platinum, a precious metal, as a catalyst, which is one of the major hurdles for commercialization of the fuel cells. Recently, the newly emerging metal‐organic frameworks (MOFs) have been widely used as self‐sacrificed precursors/templates to fabricate heteroatom‐doped porous carbons. Here, the recent progress of MOF‐derived, heteroatom‐doped porous carbon catalysts for ORR in fuel cells is systematically reviewed, and the synthesis strategies for using different MOF precursors to prepare heteroatom‐doped porous carbon catalysts, including the direct carbonization of MOFs, MOF and heteroatom source mixture carbonization, and MOF‐based composite carbonization are summarized. The emphasis is placed on the precursor design of MOF‐derived metal‐free catalysts and transition‐metal‐doped carbon catalysts because the MOF precursors often determine the microstructures of the derived porous carbon catalysts. The discussion provides a useful strategy for in situ synthesis of heteroatom‐doped carbon ORR electrocatalysts by rationally designing MOF precursors. Due to the versatility of MOF structures, MOF‐derived porous carbons not only provide chances to develop highly efficient ORR electrocatalysts, but also broaden the family of nanoporous carbons for applications in supercapacitors and batteries.  相似文献   

18.
Replacement of noble‐metal platinum catalysts with cheaper, operationally stable, and highly efficient electrocatalysts holds huge potential for large‐scale implementation of clean energy devices. Metal–organic frameworks (MOFs) and metal dichalcogenides (MDs) offer rich platforms for design of highly active electrocatalysts owing to their flexibility, ultrahigh surface area, hierarchical pore structures, and high catalytic activity. Herein, an advanced electrocatalyst based on a vertically aligned MoS2 nanosheet encapsulated Mo–N/C framework with interfacial Mo–N coupling centers is reported. The hybrid structure exhibits robust multifunctional electrocatalytic activity and stability toward the hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction. Interestingly, it further displays high‐performance of Zn–air batteries as a cathode electrocatalyst with a high power density of ≈196.4 mW cm?2 and a voltaic efficiency of ≈63 % at 5 mA cm?2, as well as excellent cycling stability even after 48 h at 25 mA cm?2. Such outstanding electrocatalytic properties stem from the synergistic effect of the distinct chemical composition, the unique three‐phase active sites, and the hierarchical pore framework for fast mass transport. This work is expected to inspire the design of advanced and performance‐oriented MOF/MD hybrid‐based electrocatalysts for wider application in electrochemical energy devices.  相似文献   

19.
Engineering non‐noble metal–based electrocatalysts with superior water oxidation performance is highly desirable for the production of renewable chemical fuels. Here, an atomically thin low‐crystallinity Fe–Mn–O hybrid nanosheet grown on carbon cloth (Fe–Mn–O NS/CC) is successfully synthetized as an efficient oxygen evolution reaction (OER) catalyst. The synthesis strategy involves a facile reflux reaction and subsequent low‐temperature calcination process, and the morphology and composition of hybrid nanosheets can be tailored conveniently. The defect‐rich Fe–Mn–O ultrathin nanosheet with uniform element distribution enables exposure of more catalytic active sites; moreover, the atomic‐scale synergistic action of Mn and Fe oxide contributes to an enhanced intrinsic catalytic activity. Therefore, the optimized Fe–Mn–O hybrid nanosheets, with lateral sizes of about 100–600 nm and ≈1.4 nm in thickness, enable a low onset potential of 1.46 V, low overpotential of 273 mV for current density of 10 mA cm?2, a small Tafel slope of 63.9 mV dec?1, and superior durability, which are superior to that of individual MnO2 and FeOOH electrode, and even outperforming most reported MnO2‐based electrocatalysts.  相似文献   

20.
Though the use of conventional self‐assembled architectures in functional applications involving advanced energy chemistries is an important research area, it remains largely unexplored. The self‐assembly of the threefold and sixfold‐symmetric terpyridines (tpy) with Co(II) salts results in a novel morphological and structural characteristics, regardless of the nature of the self‐assembled fragments. Herein, such metallopolymers are achieved by one‐pot synthesis in CH3OH/CHCl3 (v/v = 5:1) mixture ambient. It is found, for the first time, that Co‐containing polymers can be well dispersed in deionized water to form gel‐like self‐assemblies that consist of a highly interconnected 3D network and exhibit enhanced electrical conductivity and thus are attractive as electrocatalysts. As expected, the optimized Co‐based polymeric structures exhibit a low overpotential of 320 mV at 10 mA cm?2 and high stability over 2000 cycles toward oxygen evolution reaction (OER), surpassing commercial RuO2/C, single‐site Co catalysts, polymer, and metal–organic framework‐based OER catalysts reported to date. X‐ray absorption spectroscopy and density functional theory calculations reveal that the tpy‐Co2+ (3N‐Co or tpy‐Co2+) configurations act as highly active sites. Importantly, this work demonstrates the functional application of the self‐assembled metallopolymers as electrocatalysts for energy conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号