首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Photodynamic therapy (PDT) is a noninvasive and site‐specific therapeutic technique for the clinical treatment of various of superficial diseases. In order to tuning the operation wavelength and improve the tissue penetration of PDT, rare‐earth doped upconversion nanoparticles (UCNPs) with strong anti‐stokes emission are introduced in PDT recently. However, the conventional Yb3+‐sensitized UCNPs are excited at 980 nm which is overlapped with the absorption of water, thus resulting in strong overheating effect. Herein, a convenient but effective design to obtain highly emissive 795 nm excited Nd3+‐sensitized UCNPs (NaYF4:Yb,Er@NaYF4:Yb0.1Nd0.4@NaYF4) is reported, which provides about six times enhanced upconversion luminescence, comparing with traditional UCNPs (NaYF4:Yb,Er@NaYF4). A colloidal stable and non‐leaking PDT nanoplatform is fabricated later through a highly PEGylated mesoporous silica layer with covalently linked photosensitizer (Rose Bengal derivative). With as‐prepared Nd3+‐sensitized UCNPs, the nanoplatform can produce singlet oxygen more effective than traditional UCNPs. Significant higher penetration depth and lower overheating are demonstrated as well. All these features make as‐prepared nanocomposites excellent platform for PDT treatment. In addition, the nanoplatform with uniform size, high surface area, and excellent colloidal stability can be extended for other biomedical applications, such as imaging probes, biosensors, and drug delivery vehicles.  相似文献   

2.
A strategy is demonstrated for simultaneous phase/size manipulation, multicolor tuning, and remarkably enhanced upconversion luminescence (UCL), particularly in red emission bands in fixed formulae of general lanthanide‐doped upconverting nanoparticles (UCNPs), namely NaLnF4:Yb/Er (Ln: Lu, Gd, Yb), simply through transition metal Mn2+‐doping. The addition of different Mn2+ dopant contents in NaLnF4:Yb/Er system favors the crystal structure changing from hexagonal (β) phase to cubic (α) phase, and the crystal size of UCNPs can be effectively controlled. Moreover, the UCL can be tuned from green through yellow and to dominant red emissions under the excitation of 980 nm laser. Interestingly, a large enhancement in overall UCL spectra of Mn2+ doped UCNPs (~59.1 times for NaLuF4 host, ~39.3 times for NaYbF4 host compared to the UCNPs without Mn2+ doping) is observed, mainly due to remarkably enhanced luminescence in the red band. The obtained result greatly benefits in vitro and in vivo upconversion bioimaging with highly sensitive and deeper tissue penetration. To prove the application, a select sample of nanocrystal is used as an optical probe for in vitro cell and in vivo bioimaging to verify the merits of high contrast, deeper tissue penetration, and the absence of autofluorescence. Furthermore, the blood vessel of lung of a nude mouse with the injection of Mn2+‐doped NaLuF4: Yb/Er UCNPs can be readily visualized using X‐ray imaging. Therefore, the Mn2+ doping method provides a new strategy for phase/size control, multicolor tuning, and remarkable enhancement of UCL dominated by red emission, which will impact on the field of bioimaging based on UCNP nanoprobes.  相似文献   

3.
Photon upconversion multiplexing has attracted increasing interest in recent years; however, realizing the red color–based multicolor‐tunable output in upconversion nanoparticles (UCNPs) at a fixed composition remains a huge challenge. Here, a novel and versatile approach to fine‐control upconversion luminescence (UCL) colors from UCNPs through selectively confining specific excitation energy by the photon blocking effect is reported. Four types of dual‐color switchable UCNPs capable of emitting red‐blue and red‐green emissions are successfully designed following this strategy, and their UCL performance shows a multiwavelength (808/980/1550 nm) excitable feature that is well sustained in a wide range of excitation power density. The use of the photon blocking effect further enables the dynamically switchable red‐green‐blue UCL with 808/980 nm excitations. These findings provide a general method to achieve multicolor‐tunable UCL at a single nanoparticle level. Moreover, the UCNPs with red‐based multicolor emissions in this work enriches the upconversion system and should have potential applications in display, anti‐counterfeiting, and bioimaging.  相似文献   

4.
Lanthanide‐doped upconversion nanoparticles (UCNPs) have significant applications for single‐molecule probes and high‐resolution display. However, one of their major hurdles is the weak luminescence, and this remains a grand challenge to achieve at the single‐particle level. Here, 484‐fold luminescence enhancement in LuF3:Yb3+, Er3+ rhombic flake UCNPs is achieved, thanks to the Yb3+‐mediated local photothermal effect, and their original morphology, size, and good dispersibility are well preserved. These data show that the surface atomic structure of UCNPs as well as transfer from amorphous to ordered crystal structure is modulated by making use of the local photothermal conversion that is generated by the directional absorption of 980 nm light by Yb3+ ions. The confocal luminescence images obtained by super‐resolution stimulated emission depletion also show the great enhancement of individual LuF3:Yb3+, Er3+ nanoparticles; the high signal‐to‐noise ratio images indicate that the laser treatment technology opens the door for single particle imaging and practical application.  相似文献   

5.
Although upconversion nanoparticles (UCNPs) have drawn increasing attention for their unique photophysical characteristics, they suffer from a bottleneck of low luminescence efficiency due to the poor absorption coefficient of Ln3+. Dye sensitization has provided thousands‐fold enhancement of upconversion luminescence (UCL) in organic solvents because of the remarkably improved light absorption ability, but the sensitization of UCL in aqueous phase is only less than 20 folds by far, with unknown restrictive factors. Herein, the aggregation‐caused quenching (ACQ) of dyes is revealed as the most important reason limiting dye sensitization in aqueous phase, and the problem is circumvented through delicately modulating the physical properties of dyes and their assembly manner with UCNPs. By further alleviating energy back transfer (EBT) from Ln3+ to dyes, more than 600‐fold enhancement of UCL is achieved in aqueous phase. The as‐obtained dyes modified UCNPs show good biocompatibility and high signal contrast when applied for deep in vivo imaging.  相似文献   

6.
A novel, efficient, cost‐effective, and high‐level security performance anticounterfeit device achieved by plasmonic‐enhanced upconversion luminescence (UCL) is demonstrated. The plasmonic architecture consists of the randomly dispersed Ag nanowires (AgNWs) network, upconversion nanoparticles (UCNPs) monolayer, and metal film, in which the UCL is enhanced by a few tens, compared to reference sample, becuase the plasmonic modes lead to the concentration of the incident near infrared (NIR) light in the UCNPs monolayer. In the configuration, both the localized surface plasmons (LSPs) around the metallic nanostructures and gap plasmon polaritons (GPPs) confined in the UCNPs monolayer, significantly contribute to the UCL enhancement. The UCL enhancement mechanism resulting from enhanced NIR absorption, boosted internal quantum process, and formation of strong plasmonic hot spots in the plasmonic architecture is analyzed theoretically and numerically. More interestingly, a proof‐of‐concept anticounterfeit device using the plasmonic‐enhanced UCL is proposed, through which a nonreusable and high‐level cost‐effective security device protecting the genuine products is realized.  相似文献   

7.
Although neuroendocrine tumors (NETs) are slow growing, they are frequently metastatic at the time of discovery and no longer amenable to curative surgery, emphasizing the need for the development of other treatments. In this study, multifunctional upconversion nanoparticle (UCNP)‐based theranostic micelles are developed for NET‐targeted and near‐infrared (NIR)‐controlled combination chemotherapy and photodynamic therapy (PDT), and bioimaging. The theranostic micelle is formed by individual UCNP functionalized with light‐sensitive amphiphilic block copolymers poly(4,5‐dimethoxy‐2‐nitrobenzyl methacrylate)‐polyethylene glycol (PNBMA‐PEG) and Rose Bengal (RB) photosensitizers. A hydrophobic anticancer drug, AB3, is loaded into the micelles. The NIR‐activated UCNPs emit multiple luminescence bands, including UV, 540 nm, and 650 nm. The UV peaks overlap with the absorption peak of photocleavable hydrophobic PNBMA segments, triggering a rapid drug release due to the NIR‐induced hydrophobic‐to‐hydrophilic transition of the micelle core and thus enabling NIR‐controlled chemotherapy. RB molecules are activated via luminescence resonance energy transfer to generate 1O2 for NIR‐induced PDT. Meanwhile, the 650 nm emission allows for efficient fluorescence imaging. KE108, a true pansomatostatin nonapeptide, as an NET‐targeting ligand, drastically increases the tumoral uptake of the micelles. Intravenously injected AB3‐loaded UCNP‐based micelles conjugated with RB and KE108—enabling NET‐targeted combination chemotherapy and PDT—induce the best antitumor efficacy.  相似文献   

8.
With the technique of synchrotron X‐ray activation, molecule‐like, non‐plasmonic gold and silver particles in soda‐lime silicate glasses can be generated. The luminescence energy transfer between these species and lanthanide(III) ions is studied. As a result, a significant lanthanide luminescence enhancement by a factor of up to 250 under non‐resonant UV excitation is observed. The absence of a distinct gold and silver plasmon resonance absorption, respectively, the missing nanoparticle signals in previous SAXS and TEM experiments, the unaltered luminescence lifetime of the lanthanide ions compared to the non‐enhanced case, and an excitation maximum at 300–350 nm (equivalent to the absorption range of small noble metal particles) indicate unambiguously that the observed enhancement is due to a classical energy transfer between small noble metal particles and lanthanide ions, and not to a plasmonic field enhancement effect. It is proposed that very small, molecule‐like noble metal particles (such as dimers, trimers, and tetramers) first absorb the excitation light, undergo a singlet‐triplet intersystem crossing, and finally transfer the energy to an excited multiplet state of adjacent lanthanide(III) ions. X‐ray lithographic microstructuring and excitation with a commercial UV LED show the potential of the activated glass samples as bright light‐emitting devices with tunable emission colors.  相似文献   

9.
The NIR light‐induced imaging‐guided cancer therapy is a promising route in the targeting cancer therapy field. However, up to now, the existing single‐modality light‐induced imaging effects are not enough to meet the higher diagnosis requirement. Thus, the multifunctional cancer therapy platform with multimode light‐induced imaging effects is highly desirable. In this work, captopril stabilized‐Au nanoclusters Au25(Capt)18?(Au25) are assembled into the mesoporous silica shell coating outside of Nd3+‐sensitized upconversion nanoparticles (UCNPs) for the first time. The newly formed Au25 shell exhibits considerable photothermal effects, bringing about the photothermal imaging and photoacoustic imaging properties, which couple with the upconversion luminescence imaging. More importantly, the three light‐induced imaging effects can be simultaneously achieved by exciting with a single NIR light (808 nm), which is also the triggering factor for the photothermal and photodynamic cancer therapy. Besides, the nanoparticles can also present the magnetic resonance and computer tomography imaging effects due to the Gd3+ and Yb3+ ions in the UCNPs. Furthermore, due to the photodynamic and the photothermal effects, the nanoparticles possess efficient in vivo tumor growth inhibition under the single irradiation of 808 nm light. The multifunctional cancer therapy platform with multimode imaging effects realizes a true sense of light‐induced imaging‐guided cancer therapy.  相似文献   

10.
The insufficient blood flow and oxygen supply in solid tumor cause hypoxia, which leads to low sensitivity of tumorous cells and thus causing poor treatment outcome. Here, mesoporous manganese dioxide (mMnO2) with ultrasensitive biodegradability in a tumor microenvironment (TME) is grown on upconversion photodynamic nanoparticles for not only TME‐enhanced bioimaging and drug release, but also for relieving tumor hypoxia, thereby markedly improving photodynamic therapy (PDT). In this nanoplatform, mesoporous silica coated upconversion nanoparticles (UCNPs@mSiO2) with covalently loaded chlorin e6 are obtained as near‐infrared light mediated PDT agents, and then a mMnO2 shell is grown via a facile ultrasonic way. Because of its unique mesoporous structure, the obtained nanoplatform postmodified with polyethylene glycol can load the chemotherapeutic drug of doxorubicin (DOX). When used for antitumor application, the mMnO2 degrades rapidly within the TME, releasing Mn2+ ions, which couple with trimodal (upconversion luminescence, computed tomography (CT), and magnetic resonance imaging) imaging of UCNPs to perform a self‐enhanced imaging. Significantly, the degradation of mMnO2 shell brings an efficient DOX release, and relieve tumor hypoxia by simultaneously inducing decomposition of tumor endogenous H2O2 and reduction of glutathione, thus achieving a highly potent chemo‐photodynamic therapy.  相似文献   

11.
In this work, a simple method is demonstrated for the synthesis of multifunctional core–shell nanoparticles NaYF4:Yb,Er@NaYF4:Yb@NaNdF4:Yb@NaYF4:Yb@PAA (labeled as Er@Y@Nd@Y@PAA or UCNP@PAA), which contain a highly effective 808‐nm‐to‐visible UCNP core and a thin shell of poly(acrylic acid) (PAA) to achieve upconversion bioimaging and pH‐sensitive anticancer chemotherapy simultaneously. The core–shell Nd3+‐sensitized UCNPs are optimized by varying the shell number, core size, and host lattices. The final optimized Er@Y@Nd@Y nanoparticle composition shows a significantly improved upconversion luminescence intensity, that is, 12.8 times higher than Er@Y@Nd nanoparticles. After coating the nanocomposites with a thin layer of PAA, the resulting UCNP@PAA nanocomposite perform well as a pH‐responsive nanocarrier and show clear advantages over UCNP@mSiO2, which are evidenced by in vitro/in vivo experiments. Histological analysis also reveals that no pathological changes or inflammatory responses occur in the heart, lungs, kidneys, liver, and spleen. In summary, this study presents a major step forward towards a new therapeutic and diagnostic treatment of tumors by using 808‐nm excited UCNPs to replace the traditional 980‐nm excitation.  相似文献   

12.
Photodynamic therapy (PDT) based on upconversion nanoparticles (UCNPs) can effectively destroy cancer cells under tissue‐penetrating near‐infrared light (NIR) light. Herein, we synthesize manganese (Mn2+)‐doped UCNPs with strong red light emission at ca. 660 nm under 980 nm NIR excitation to activate Chlorin e6 (Ce6), producing singlet oxygen (1O2) to kill cancer cells. A layer‐by‐layer (LbL) self‐assembly strategy is employed to load multiple layers of Ce6 conjugated polymers onto UCNPs via electrostatic interactions. UCNPs with two layers of Ce6 loading (UCNP@2xCe6) are found to be optimal in terms of Ce6 loading and 1O2 generation. By further coating UCNP@2xCe6 with an outer layer of charge‐reversible polymer containing dimethylmaleic acid (DMMA) groups and polyethylene glycol (PEG) chains, we obtain a UCNP@2xCe6‐DMMA‐PEG nanocomplex, the surface of which is negatively charged and PEG coated under pH 7.4; this could be converted to have a positively charged naked surface at pH 6.8, significantly enhancing cell internalization of nanoparticles and increasing in vitro NIR‐induced PDT efficacy. We then utilize the intrinsic optical and paramagnetic properties of Mn2+‐doped UCNPs for in vivo dual modal imaging, and uncover an enhanced retention of UCNP@2xCe6‐DMMA‐PEG inside the tumor after intratumoral injection, owing to the slightly acidic tumor microenvironment. Consequently, a significantly improved in vivo PDT therapeutic effect is achieved using our charge‐reversible UCNP@2xCe6‐DMMA‐PEG nanoparticles. Finally, we further demonstrate the remarkably enhanced tumor‐homing of these pH‐responsive charge‐switchable nanoparticles in comparison to a control counterpart without pH sensitivity after systemic intravenous injection. Our results suggest that UCNPs with finely designed surface coatings could serve as smart pH‐responsive PDT agents promising in cancer theranostics.  相似文献   

13.
Conventional photodynamic therapy (PDT) has limited applications in clinical cancer therapy due to the insufficient O2 supply, inefficient reactive oxygen species (ROS) generation, and low penetration depth of light. In this work, a multifunctional nanoplatform, upconversion nanoparticles (UCNPs)@TiO2@MnO2 core/shell/sheet nanocomposites (UTMs), is designed and constructed to overcome these drawbacks by generating O2 in situ, amplifying the content of singlet oxygen (1O2) and hydroxyl radical (?OH) via water‐splitting, and utilizing 980 nm near‐infrared (NIR) light to increase penetration depth. Once UTMs are accumulated at tumor site, intracellular H2O2 is catalyzed by MnO2 nanosheets to generate O2 for improving oxygen‐dependent PDT. Simultaneously, with the decomposition of MnO2 nanosheets and 980 nm NIR irradiation, UCNPs can efficiently convert NIR to ultraviolet light to activate TiO2 and generate toxic ROS for deep tumor therapy. In addition, UCNPs and decomposed Mn2+ can be used for further upconversion luminescence and magnetic resonance imaging in tumor site. Both in vitro and in vivo experiments demonstrate that this nanoplatform can significantly improve PDT efficiency with tumor imaging capability, which will find great potential in the fight against tumor.  相似文献   

14.
Effective nanoprobes and contrast agents are urgently sought for early‐stage cancer diagnosis. Upconversion nanoparticles (UCNPs) are considerable alternatives for bioimaging, cancer diagnosis, and therapy. Yb3+/Tm3+ co‐doping brings both emission and excitation wavelengths into the near‐infrared (NIR) region, which is known as “optical transmission window” and ideally suitable for bioimaging. Here, NIR emission intensity is remarkably enhanced by 113 times with the increase of Yb3+ concentration from 20% to 98% in polyethylene glycol (PEG) modified NaYF4:Yb3+/Tm3+ UCNPs. PEG‐UCNPs‐5 (98% Yb3+) can act as excellent nanoprobes and contrast agents for trimodal upconversion (UC) optical/CT/T2‐weighted magnetic resonance imaging (MRI). In addition, the enhanced detection of lung in vivo long‐lasting tracking, as well as possible clearance mechanism and excretion routes of PEG‐UCNPs‐5 have been demonstrated. More significantly, a small tumor down to 4 mm is detected in vivo via intravenous injection of these nanoprobes under both UC optical and T2‐weighted MRI modalities. PEG‐UCNPs‐5 can emerge as bioprobes for multi‐modal bioimaging, disease diagnosis, and therapy, especially the early‐stage tumor diagnosis.  相似文献   

15.
The surface plasmon resonance (SPR) of noble metals is known to improve the efficiency of various processes and devices. The photocatalytic process is the production of fuels and storage of solar photons in chemical bonds without imposing harmful threats to the environment. Photovoltaics are other devices utilizing solar energy for electrical energy. Similarly, other optoelectronic devices like photodetectors absorb photons and convert it into charges via electron–hole dissociation processes. In contrast, light‐emitting optoelectronic devices work based on the phenomenon of charge recombination to produce light. All these devices, however, have efficiency limitations, which impede the application of novel functional materials in these devices. A more direct approach is the utilization of noble metals and their complexes, which significantly enhance the efficiencies of these devices by SPR. This article highlights recent works and applications of noble metals by SPR‐enhanced photocatalysis for hydrogen evolution from water, CO2 conversion into useful compounds, and oxidation of hazardous pollutants. In addition, the plasmon‐enhancement of optoelectronic devices is summarized. Several possible mechanisms that have been previously reported in the literature are discussed in this work, with particular emphasis on different features of these mechanisms involving devices that are not highlighted and therefore need more attention.  相似文献   

16.
The last decade has witnessed the remarkable research progress of lanthanide‐doped upconversion nanocrystals (UCNCs) at the forefront of promising applications. However, the future development and application of UCNCs are constrained greatly by their underlying shortcomings such as significant nonradiative processes, low quantum efficiency, and single emission colors. Here a hybrid plasmonic upconversion nanostructure consisting of a GNR@SiO2 coupled with NaGdF4:Yb3+,Nd3+@NaGdF4:Yb3+,Er3+@NaGdF4 core–shell–shell UCNCs is rationally designed and fabricated, which exhibits strongly enhanced UC fluorescence (up to 20 folds) and flexibly tunable UC colors. The experimental findings show that controlling the SiO2 spacer thickness enables readily manipulating the intensity ratio of the Er3+ red, green, and blue emissions, thereby allowing us to achieve the emission color tuning from pale yellow to green upon excitation at 808 nm. Electrodynamic simulations reveal that the tunable UC colors are due to the interplay of plasmon‐mediated simultaneous excitation and emission enhancements in the Er3+ green emission yet only excitation enhancement in the blue and red emissions. The results not only provide an upfront experimental design for constructing hybrid plasmonic UC nanostructures with high efficiency and color tunability, but also deepen the understanding of the interaction mechanism between the Er3+ emissions and plasmon resonances in such complex hybrid nanostructure.  相似文献   

17.
Size‐dependent Raman spectra of the hexagonal (β)‐phase Yb3+,Er3+ codoped NaYF4 nanophosphors and dynamic probing of the upconversion luminescence (UCL) are reported. Raman scattering results show the normal red shifts of Raman peaks but anomalous line narrowing with decreasing the particle sizes. The phonon confinement effects are believed to be dominated by the surface vibrational energies in affecting UCL. Dynamic decay data are then applied to quantitatively verify the surface effects and size‐dependent UCL. Dynamic probing is shown to be an efficient tool to both qualitatively and quantitatively characterize the upconversion nanophorphors (UCNPs) that have no “quantum efficiency.” The findings are relevant to the engineering of the nanostructures of the UCNPs for the applications of the bioimaging and photodynamic therapy.  相似文献   

18.
Local optical field modulation using plasmonic materials or photonic crystals provides a powerful strategy for enhancing upconversion emission of lanthanide-doped upconversion nanocrystals (UCNPs). However, it is restricted to static UC enhancement and the corresponding dynamic modulation of UC is yet to be reported, limiting its practical applications in information devices. Here, a dynamic UC modulation system is reported through electric stimulation by integrating UCNPs with electrically sensitive WO3−x plasmonic photonic crystals (PPCs). The tunable emission enhancement of UCNPs varying from five to 26 folds is achieved in WO3−x PPCs/UCNPs hybrids through external electric stimulation within +1.6 and −1.6 V. It stems from the reversible control of the photonic bandgaps and localized surface plasmon resonance of WO3−x PPCs, ascribed to the variation of refractive index and oxygen vacancy of WO3−x, induced by the reversible change of atomic ratio of W5+ to W6+ under different applied voltages. Moreover, the electrically triggered information encryption devices are developed, employing a programmable logic gate array based on WO3−x PPCs/UCNPs with the ability to convert information-encrypted electrical signals into visible patterns. These observations offer a new attempt to manipulate the UC and will simulate the new applications in the display and optical storage devices.  相似文献   

19.
The development of π‐conjugated molecular systems with high‐efficiency generation of UV and blue light plays an important role in the fields of light‐emitting diodes, fluorescent imaging, and information storage. Herein, supramolecular construction of solid‐state UV/blue luminescent materials are assembled using 2,5‐diphenyloxazole (DPO) with four typical co‐assembled building blocks (1,4‐diiodotetrafluorobenzene, 4‐bromotetrafluorobenzene carboxylic acid, pentafluorophenol, and octafluoronaphthalene). Compared with the pristine DPO sample, the as‐prepared two‐component molecular materials feature ease of crystallization, high crystallinity, enhanced thermal stability and tunable luminescence properties (such as emissive wavelength, color, fluorescence lifetime, and photoluminescence quantum yield) as well as multicolor polarized emission in the UV/blue region. Moreover, pump‐enhanced luminescence and reversible mechanochromic fluorescence (MCF) properties can also be obtained for these molecular solids, which are absent for the pristine DPO sample. Therefore, this work provides a procedure for the facile self‐assembly of ordered two‐component molecular materials with tunable UV/blue luminescence properties, which have potential application in the areas of light‐emitting displays, polarized emission, frequency doubling, and luminescent sensors.  相似文献   

20.
Multimodal bio‐imaging has attracted great attention for early and accurate diagnosis of tumors, which, however, suffers from the intractable issues such as complicated multi‐step syntheses for composite nanostructures and interferences among different modalities like fluorescence quenching by MRI contrast agents (e.g., magnetic iron oxide NPs). Herein, the first example of T2‐weighted MR imaging of Ho3+‐doped upconversion nanoparticles (UCNPs) is presented, which, very attractively, could also be simultaneously used for upconversion luminesence (UCL) and CT imaging, thus enabling high performance multi‐modal MRI/UCL/CT imagings in single UCNPs. The new finding of T2‐MRI contrast enhancement by integrated sensitizer (Yb3+) and activator (Ho3+) in UCNPs favors accurate MR diagnosis of brain tumor and provides a new strategy for acquiring T2‐MRI/optical imaging without fluorescence quenching. Unlike other multi‐phased composite nanostructures for multimodality imaging, this Ho3+‐doped UCNPs are featured with simplicity of synthesis and highly efficient multimodal MRI/UCL/CT imaging without fluorescence quenching, thus simplify nanostructure and probe preparation and enable win–win multimodality imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号