首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, there have been extensive research efforts on developing high performance organolead halide based perovskite solar cells. While most studies focused on optimizing the deposition processes of the perovskite films, the selection of the precursors has been rather limited to the lead halide/methylammonium (or formamidium) halide combination. In this work, we developed a new precursor, HPbI3, to replace lead halide. The new precursor enables formation of highly uniform formamidium lead iodide (FAPbI3) films through a one‐step spin‐coating process. Furthermore, the FAPbI3 perovskite films exhibit a highly crystalline phase with strong (110) preferred orientation and excellent thermal stability. The planar heterojunction solar cells based on these perovskite films exhibit an average efficiency of 15.4% and champion efficiency of 17.5% under AM 1.5 G illumination. By comparing the morphology and formation process of the perovskite films fabricated from the formamidium iodide (FAI)/HPbI3, FAI/PbI2, and FAI/PbI2 with HI additive precursor combinations, it is shown that the superior property of the HPbI3 based perovskite films may originate from 1) a slow crystallization process involving exchange of H+ and FA+ ions in the PbI6 octahedral framework and 2) elimination of water in the precursor solution state.  相似文献   

2.
Cs/FA/MA triple cation perovskite films have been well developed in the antisolvent dripping method, attributable to its outstanding photovoltaic and stability performances. However, a facile and effective strategy is still lacking for fabricating high‐quality large‐grain triple cation perovskite films via sequential deposition method a, which is one of the key technologies for high efficiency perovskite solar cells. To address this issue, a δ‐CsPbI3 intermediate phase growth (CsPbI3‐IPG) assisted sequential deposition method is demonstrated for the first time. The approach not only achieves incorporation of controllable cesium into (FAPbI3)1–x(MAPbBr3)x perovskite, but also enlarges the perovskite grains, manipulates the crystallization, modulates the bandgap, and improves the stability of final perovskite films. The photovoltaic performances of the devices based on these Cs/FA/MA perovskite films with various amounts of the δ‐CsPbI3 intermediate phase are investigated systematically. Benefiting from moderate cesium incorporation and intermediate phase‐assisted grain growth, the optimized Cs/FA/MA perovskite solar cells exhibit a significantly improved power conversion efficiency and operational stability of unencapsulated devices. This facile strategy provides new insights into the compositional engineering of triple or quadruple cation perovskite materials with enlarged grains and superior stability via a sequential deposition method.  相似文献   

3.
Formamidinium lead triiodide (FAPbI3)‐based perovskite materials are of interest for photovoltaics in view of their close‐to‐ideal bandgap, allowing absorption of photons over a broad solar spectrum. However, FAPbI3‐based materials suffer from a notorious phase transition from the photoactive black phase (α‐FAPbI3) to nonperovskite yellow phase (δ‐FAPbI3) under ambient conditions. This transition dramatically reduces light absorbtion, thus, degrading the photovoltaic performance and stability of ensuring solar cells. In this study, 1‐hexyl‐3‐methylimidazolium iodide (HMII) ionic liquid (IL) is employed as an additive for the first time in FAPbI3 perovskite to overcome the above‐mentioned issues. HMII incorporation facilitates the grain coarsening of FAPbI3 crystal owing to its high‐polarity and high‐boiling point, which yields liquid domains between neighboring grains to reduce the activation energy of the grain‐boundary migration. As a result, the FAPbI3 active layer exhibits micron‐sized grains with substantially suppressed parasitic traps with an Urbach energy reduced by 2 meV. Hence, the resulting perovskite solar cell achieves an efficiency of 20.6% with notable increase in open circuit voltage (VOC) of 80 mV compared with HMII‐free cells (17.1%). More importantly, the HMII‐doped FAPbI3‐based cells show a striking enhancement in shelf‐stability under high humidity and thermal stress, retaining >80% of their initial efficiencies at 60 ± 10% relative humidity and ≈95% at 65 °C.  相似文献   

4.
The two‐step conversion process consisting of metal halide deposition followed by conversion to hybrid perovskite has been successfully applied toward producing high‐quality solar cells of the archetypal MAPbI3 hybrid perovskite, but the conversion of other halide perovskites, such as the lower bandgap FAPbI3, is more challenging and tends to be hampered by the formation of hexagonal nonperovskite polymorph of FAPbI3, requiring Cs addition and/or extensive thermal annealing. Here, an efficient room‐temperature conversion route of PbI2 into the α‐FAPbI3 perovskite phase without the use of cesium is demonstrated. Using in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and quartz crystal microbalance with dissipation (QCM‐D), the conversion behaviors of the PbI2 precursor from its different states are compared. α‐FAPbI3 forms spontaneously and efficiently at room temperature from P2 (ordered solvated polymorphs with DMF) without hexagonal phase formation and leads to complete conversion after thermal annealing. The average power conversion efficiency (PCE) of the fabricated solar cells is greatly improved from 16.0(±0.32)% (conversion from annealed PbI2) to 17.23(±0.28)% (from solvated PbI2) with a champion device PCE > 18% due to reduction of carrier recombination rate. This work provides new design rules toward the room‐temperature phase transformation and processing of hybrid perovskite films based on FA+ cation without the need for Cs+ or mixed halide formulation.  相似文献   

5.
The two-step sequentially deposition strategy has been widely used to produce high-performance FAPbI3-based solar cells. However, due to the rapid reaction between PbI2 and FAI, a dense perovskite film forms on top of the PbI2 layer immediately and blocks the FAI diffusion into the bottom of the PbI2 film for a complete reaction, which results in a low-efficiency and limited reproducibility of perovskite solar cells (PSCs). Here, high-quality α-FAPbI3 perovskite films by crystal growth regulation with 4-fluorobenzamide additives is fabricated. The additives can interact with FAI to suppress the fast reaction between the FAI and PbI2 and effectively passivate the under-coordinated Pb2+ or I- defects. As a result, α-FAPbI3 perovskite films with low trap density and large grain size are prepared. The modified PSCs present a high-power conversion efficiency of 24.08%, maintaining 90% of their initial efficiency after 1400 h in high humidity. This study provides an efficient strategy of synergistic crystallization and passivation to form high-quality α-FAPbI3 films for high-performance PSCs.  相似文献   

6.
Composition engineering is a particularly simple and effective approach especially using mixed cations and halide anions to optimize the morphology, crystallinity, and light absorption of perovskite films. However, there are very few reports on the use of anion substitutions to develop uniform and highly crystalline perovskite films with large grain size and reduced defects. Here, the first report of employing tetrafluoroborate (BF4?) anion substitutions to improve the properties of (FA = formamidinium, MA = methylammonium (FAPbI3)0.83(MAPbBr3)0.17) perovskite films is demonstrated. The BF4? can be successfully incorporated into a mixed‐ion perovskite crystal frame, leading to lattice relaxation and a longer photoluminescence lifetime, higher recombination resistance, and 1–2 orders magnitude lower trap density in prepared perovskite films and derived solar cells. These advantages benefit the performance of perovskite solar cells (PVSCs), resulting in an improved power conversion efficiency (PCE) of 20.16% from 17.55% due to enhanced open‐circuit voltage (VOC) and fill factor. This is the highest PCE for BF4? anion substituted lead halide PVSCs reported to date. This work provides insight for further exploration of anion substitutions in perovskites to enhance the performance of PVSCs and other optoelectronic devices.  相似文献   

7.
Surface passivation via 2D perovskite is critical for perovskite solar cells (PSCs) to achieve remarkable performances, in which the applied spacer cations play an important role on structural templating. However, the random orientation of 2D perovskite always hinder the carrier transport. Herein, multiple nitrogen sites containing organic spacer molecule (1H-Pyrazole-1-carboxamidine hydrochloride, PAH) is introduced to form 2D passivation layer on the surface of formamidinium based (FAPbI3) perovskite. Deriving from the interactions between PAH and PbI2, the defects of FAPbI3 perovskite are effectively passivated. Interestingly, due to the multiple-site interactions, the 2D nanosheets are found to grow perpendicularly to the substrate for promotion of charge transfer. Therefore, an impressive power conversion efficiency of 24.6% and outstanding long-term stability are achieved for the 2D/3D perovskite devices. The findings further provide a perspective in structure design of novel organic halide salts for the fabrication of efficient and stable PSCs.  相似文献   

8.
Perovskite solar cells (PSCs) based on organic monovalent cation (methylammonium or formamidinium) have shown excellent optoelectronic properties with high efficiencies above 22%, threatening the status of silicon solar cells. However, critical issues of long‐term stability have to be solved for commercialization. The severe weakness of the state‐of‐the‐art PSCs against moisture originates mainly from the hygroscopic organic cations. Here, rubidium (Rb) is suggested as a promising candidate for an inorganic–organic mixed cation system to enhance moisture‐tolerance and photovoltaic performances of formamidinium lead iodide (FAPbI3). Partial incorporation of Rb in FAPbI3 tunes the tolerance factor and stabilizes the photoactive perovskite structure. Phase conversion from hexagonal yellow FAPbI3 to trigonal black FAPbI3 becomes favored when Rb is introduced. The authors find that the absorbance and fluorescence lifetime of 5% Rb‐incorporated FAPbI3 (Rb0.05FA0.95PbI3) are enhanced than bare FAPbI3. Rb0.05FA0.95PbI3‐based PSCs exhibit a best power conversion efficiency of 17.16%, which is much higher than that of the FAPbI3 device (13.56%). Moreover, it is demonstrated that the Rb0.05FA0.95PbI3 film shows superior stability against high humidity (85%) and the full device made with the mixed perovskite exhibits remarkable long‐term stability under ambient condition without encapsulation, retaining the high performance for 1000 h.  相似文献   

9.
While Sn? Pb alloyed perovskites have been considered as an effective approach to broaden the absorption spectrum, it is still challenging to modify the crystallization (and thus morphology, crystallinity, and orientation) in a controllable manner and thus boost the efficiency of Sn? Pb alloyed perovskite solar cells. Here, it is unveiled that controlling the crystallization of CH3NH3Sn0.25Pb0.75I3 films can be simply realized by adjusting the amount of dimethyl sulfoxide in precursors, which has not been reported in Sn? Pb alloyed perovskite systems. The remarkable perovskite crystallinity enhancement by the 20‐fold enhanced (110) plane intensity in the X‐ray diffraction spectrum of CH3NH3Sn0.25Pb0.75I3 and the preferred (110) orientation with the texture coefficient enhanced by 2.6 times to reach 0.88 are demonstrated. Importantly, it is discovered that the introduction of dimethyl sulfoxide avoids the formation of the colloidal coagulation observed in prolonged‐storage precursors and ameliorates inhomogeneous Sn/Pb distributions in resultant perovskite films. Through optimizing perovskite films and device structures, hysteresis‐free planar‐heterojunction CH3NH3Sn0.25Pb0.75I3 solar cells with the efficiency reaching 15.2%, which are the most efficient Sn? Pb alloy‐based perovskite solar cells, are achieved.  相似文献   

10.
State‐of‐the‐art optoelectronic devices based on metal‐halide perovskites demand solution‐processed structures with high crystallinity, controlled crystallographic orientation, and enhanced environmental stability. Formamidinium lead iodide (α‐FAPbI3) possesses a suitable bandgap of 1.48 eV and enhanced thermal stability, whereas perovskite‐type polymorph (α‐phase) is thermodynamically instable at ambient temperatures. Stable α‐FAPbI3 perovskite 1D structure arrays with high crystallinity and ordered crystallographic orientation are developed by controlled nucleation and growth in capillary bridges. By surface functionalization with phenylethylammonium ions (PEA+), FAPbI3 wires sustain a stable α‐phase after 28 day storage in the ambient environment with a relative humidity of 50%. Enhanced photoluminescence (PL) intensity and elongated PL lifetime demonstrate suppressed trap density and high crystallinity in these 1D structures, which is also reflected by the enhanced diffraction density and pure (001) crystallographic orientation in the grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) pattern. Based on these high‐quality 1D structures, sensitive photodetectors are achieved with average responsivities of 5282 A W?1, average specific detectivities of more than 1.45 × 1014 Jones, and a fast response speed with a 3 dB bandwidth of 15 kHz.  相似文献   

11.
Three new star‐shaped hole‐transporting materials (HTMs) incorporating benzotripyrrole, benzotrifuran, and benzotriselenophene central cores endowed with three‐armed triphenylamine moieties ( BTP‐1 , BTF‐1 , and BTSe‐1 , respectively) are designed, synthesized, and implemented in perovskite solar cells (PSCs). The impact that the heteroatom‐containing central scaffold has on the electrochemical and photophysical properties, as well as on the photovoltaic performance, is systematically investigated and compared with their sulfur‐rich analogue ( BTT‐3 ). The new HTMs exhibit suitable highest‐occupied molecular orbitals (HOMO) levels regarding the valence band of the perovskite, which ensure efficient hole extraction at the perovskite/HTM interface. The molecular structures of BTF‐1 , BTT‐3 , and BTSe‐1 are fully elucidated by single‐crystal X‐ray crystallography as toluene solvates. The optimized (FAPbI3)0.85(MAPbBr3)0.15‐based perovskite solar cells employing the tailor‐made, chalcogenide‐based HTMs exhibit remarkable power conversion efficiencies up to 18.5%, which are comparable to the devices based on the benchmark spiro‐OMeTAD. PSCs with BTP‐1 exhibit a more limited power conversion efficiency of 15.5%, with noticeable hysteresis. This systematic study indicates that chalcogenide‐based derivatives are promising HTM candidates to compete efficiently with spiro‐OMeTAD.  相似文献   

12.
Organolead trihalide perovskite films with a large grain size and excellent surface morphology are favored to good‐performance solar cells. However, interstitial and antisite defects related trap‐states are originated unavoidably on the surfaces of the perovskite films prepared by the solution deposition procedures. The development of post‐growth treatment of defective films is an attractive method to reduce the defects to form good‐quality perovskite layers. Herein, a post‐treatment tactic is developed to optimize the perovskite crystallization by treating the surface of the one‐step deposited CH3NH3PbI3 (MAPbI3) using formamidinium iodide (FAI). Charge carrier kinetics investigated via time‐resolved photoluminescent, open‐circuit photovoltage decay, and time‐resolved charge extraction indicate that FAI post‐treatment will boost the perovskite crystalline quality, and further result in the reduction of the defects or trap‐states in the perovskite films. The photovoltaic devices by FAI treatment show much improved performance in comparison to the controlled solar cell. As a result, a champion solar cell with the best power conversion efficiency of 20.25% is obtained due to a noticeable improvement in fill factor. This finding exhibits a simple procedure to passivate the perovskite layer via regulating the crystallization and decreasing defect density.  相似文献   

13.
Mixed‐cation perovskite solar cells (PSCs) have become of enormous interest because of their excellent efficiency, which is now crossing 23.7%. Their broader absorption, relatively high stability with low fabrication cost compared to conventional single phase ABX3 perovskites (where A: organic cation; B: divalent metal ion; and X: halide anion) are key properties of mixed‐halide mixed‐cation perovskites. However, the controlling reaction rate and formation of extremely dense, textured, smooth, and large grains of perovskite layer is a crucial task in order to achieve highly efficient PSCs. Herein, a new simple dual‐retarded reaction processing (DRP) method is developed to synthesize a high‐quality mixed‐cation (FAPbI3)0.85(MAPbBr3)0.15 (where MAPbBr3 stands for methylammonium lead bromide and FAPbI3 stands for formamidinium lead iodide) perovskite thin film via intermediate phase and incorporation of nitrogen‐doped reduced graphene oxide (N‐rGO). The reaction rate is retarded via two steps: first the formation of intermediate phase and second the interaction of the nitrogen groups on N‐rGO with hydrogen atoms from formamidinium cations. This DRP process allows for the fabrication of PSCs with maximum conversion efficiency higher than 20.3%.  相似文献   

14.
Organic–inorganic formamidinium lead triiodide (FAPbI3) hybrid perovskite quantum dot (QD) is of great interest to photovoltaic (PV) community due to its narrow band gap, higher ambient stability, and long carrier lifetime. However, the surface ligand management of FAPbI3 QD is still a key hurdle that impedes the design of high-efficiency solar cells. Herein, this study first develops a solution-mediated ligand exchange (SMLE) for preparing FAPbI3 QD film with enhanced electronic coupling. By dissolving optimal methylammonium iodide (MAI) into antisolvent to treat the FAPbI3 QD solution, the SMLE can not only effectively replace the long-chain ligands, but also passivate the A- and X-site vacancies. By combining experimental and theoretical results, this study demonstrates that the SMLE engineered FAPbI3 QD exhibits lower defect density, which is beneficial for fabricating high-quality QD arrays with desired morphology and carrier transport. Consequently, the SMLE FAPbI3 QD based solar cell outputs a champion efficiency of 15.10% together with improved long-term ambient storage stability, which is currently the highest reported value for hybrid perovskite QD solar cells. These results would provide new design principle of hybrid perovskite QDs toward high-performance optoelectronic application.  相似文献   

15.
Formamidinium lead triiodide (FAPbI3) has been demonstrated as the most efficient perovskite system to date, due to its excellent thermal stability and an ideal bandgap approaching the Shockley-Queisser limit. Whereas, there are intrinsic quantum confinement effects in FAPbI3, which lead to unwanted non-radiative recombination. Additionally, the black α-phase of FAPbI3 is unstable under room temperature due to the significant residual tensile stress in the film. To simultaneously address the above issues, a thermally-activated delayed fluorescence polymer P1 is designed in the study to modify the FAPbI3 film. Owing to the spectral overlap between the photoluminescence of P1 and absorption of the above-bandgap quantum wells of FAPbI3, the Förster energy transfer occurs at the P1/FAPbI3 interface, which further triggers the Dexter energy transfer within FAPbI3. The exciton “recycling” can thus be realized, which reduces the non-radiative recombination losses in perovskite solar cells (PSCs). Moreover, P1 is found to introduce compressive stress into FAPbI3, which relieves the tensile stress in perovskite. Consequently, the PSCs with P1 treatment achieve an outstanding power conversion efficiency (PCE) of 23.51%. Moreover, with the alleviation of stress in the perovskite film, flexible PSCs (f-PSCs) also deliver a high PCE of 21.40%.  相似文献   

16.
Organic–inorganic lead halide perovskites have shown great future for application in solar cells owing to their exceptional optical and electronic properties. To achieve high‐performance perovskite solar cells, a perovskite light absorbing layer with large grains is desirable in order to minimize grain boundaries and recombination during the operation of the device. Herein, a simple yet efficient approach is developed to synthesize perovskite films consisting of monolithic‐like grains with micrometer size through in situ deposition of octadecylamine functionalized single‐walled carbon nanotubes (ODA‐SWCNTs) onto the surface of the perovskite layer. The ODA‐SWCNTs form a capping layer that controls the evaporation rate of organic solvents in the perovskite film during the postthermal treatment. This favorable morphology in turn dramatically enhances the short‐circuit current density of the perovskite solar cells and almost completely eliminates the hysteresis. A maximum power conversion efficiency of 16.1% is achieved with an ODA‐SWCNT incorporated planar solar cell using (FA0.83MA0.17)0.95Cs0.05Pb(I0.83Br0.17)3 as light absorber. Furthermore, the perovskite solar cells with ODA‐SWCNT demonstrate extraordinary stability with performance retention of 80% after 45 d stability testing under high humidity (60–90%) environment. This work opens up a new avenue for morphology manipulation of perovskite films and enhances the device stability using carbon material.  相似文献   

17.
A precise control of the morphology and crystallization of perovskite thin-films is well-correlated to higher perovskite solar cells performances. Ionic liquids (ILs) can retard perovskite crystallization to aid the formation of films with uniform morphology to realize highly efficient perovskite solar cells. Herein, we attempt to control the nanostructural growth of CH3NH3PbI3 thin films by adding ILs to the perovskite spin-coating solution and investigate the effect of IL viscosity on the resulting CH3NH3PbI3 nanoparticle (NP) thin films. NPs with desirable morphology were obtained using ILs with a low viscosity that completely dissolved in the CH3NH3PbI3 solution. In particular, the IL tetrabutylammonium chloride yielded NPs with a diameter of 500 nm and controllable morphology, crystallinity, and absorption behavior, which led to improved photovoltaic performance compared with that of solar cells containing NPs produced using other ILs. Our findings revealed a pathway to obtain uniformly distributed CH3NH3PbI3 NP thin films for use in perovskite solar cells. The developed method is well suited for large-scale production of perovskite thin films on flexible substrates.  相似文献   

18.
To achieve high‐performance perovskite solar cells, especially with mesoscopic cell structure, the design of the electron transport layer (ETL) is of paramount importance. Highly branched anatase TiO2 nanowires (ATNWs) with varied orientation are grown via a facile one‐step hydrothermal process on a transparent conducting oxide substrate. These films show good coverage with optimization obtained by controlling the hydrothermal reaction time. A homogeneous methyl­ammonium lead iodide (CH3NH3PbI3) perovskite thin film is deposited onto these ATNW films forming a bilayer architecture comprising of a CH3NH3PbI3 sensitized ATNW bottom layer and a CH3NH3PbI3 capping layer. The formation, grain size, and uniformity of the perovskite crystals strongly depend on the degree of surface coverage and the thickness of the ATNW film. Solar cells constructed using the optimized ATNW thin films (220 nm in thickness) yield power conversion efficiencies up to 14.2% with a short‐circuit photocurrent density of 20.32 mA cm?2, an open‐circuit photovoltage of 993 mV, and a fill factor of 0.70. The dendritic ETL and additional perovskite capping layer efficiently capture light and thus exhibit a superior light harvesting efficiency. The ATNW film is an effective hole‐blocking layer and efficient electron transport medium for excellent charge separation and collection within the cells.  相似文献   

19.
The development of organometal halide perovskite solar cells has grown rapidly and the highest efficiency of the devices has recently surpassed 22%. Because these solar cells contain toxic lead, a sustainable strategy is required to prevent environmental pollution and avoid healthy hazard caused by possible lead outflow. Here, in situ recycling PbI2 from thermal decomposition CH3NH3PbI3 perovskite films for efficient perovskite solar cells was developed. The thermal behavior of CH3NH3PbI3 perovskite and its individual components were examined by thermogravimetric analysis. By optimizing the process of thermal decomposition CH3NH3PbI3 film, the complete conversion from CH3NH3PbI3 to pure PbI2 layer with a mesoporous scaffold was achieved. The mesoporous structure readily promotes the conversion efficiency of perovskite and consequently results in high‐performance device. A perovskite crystal growth mechanism on the mesoporous PbI2 structure was proposed. These results suggest that in situ recycled PbI2 scaffolds can be a new route in manipulating the morphology of the perovskite active layer, providing new possibilities for high performance. Meanwhile, the risk of lead outflow can be released, and the saving‐energy fabrication of efficient solar cells can be realized.  相似文献   

20.
Solvent engineering technique for planar heterojunction perovskite solar cells is an efficient way to achieve uniformly controlled grain morphology for perovskite films. In this report, diethyl ether solvent engineering technique was used for Methyl ammonium lead triiodide (CH3NH3PbI3) perovskite thin films for planar heterojunction solar cells which exhibited a PCE of 9.20%. Morphological improvements and enhanced grain sizes leads to enhanced absorption of CH3NH3PbI3. Moreover solar cells have showed an excellent environmental stability of more than 100 days. This increase in efficiency is due to improved film morphology of perovskite layer after solvent treatment which has been revealed under UV–Vis spectroscopy, SEM images, X-ray diffraction and impedance spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号