首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Robust self‐healing thermoplastic elastomers are expected to have repeated healing capability, remarkable mechanical properties, transparency, and superior toughness. The phase‐locked design in this work provides excellent tensile mechanical properties and efficient healability at a moderate temperature due to the dynamic disulfide bonds embedded in the hard segments and mainly being locked in the viscoelastic hard microphase region. The self‐healing elastomers exhibit a maximum tensile stress of 25 MPa and a fracture strain of over 1600%, which are quite prominent compared to previous reports. The nanoscale domains of the elastomer are smaller than the wavelength of visible light by microphase separation control resulting in colorless, nearly 100% transparency, and are as good as quartz glasses. The high dynamics of the phase‐locked disulfide bonds renders a high healing efficiency of scratches on the surface within 60 s at 70 °C. The rapid scratch healing and complete transparency recovery of the elastomers provide new avenues in the highly transparent surface or protective films which finds potential applications for precision optical lenses, flexible display screens, and automobile or aircraft lighting finishes.  相似文献   

2.
Stimuli‐responsive smart optical materials hold great promise for applications in active optics, display, sensing, energy conversion, military camouflage, and artificial intelligence. However, their applications are greatly restricted by the difficulty of tuning different optical properties within the same material, especially by a single stimulus. Here, magnetic modulations of multiple optical properties are demonstrated in a crystalline colloidal array (CCA) of magnetic nanorods. Small‐angle X‐ray scattering studies reveal that these nanorods form an unusual monoclinic crystal in concentrated suspensions. The CCA exhibits optical anisotropy in the form of a photonic bandgap and birefringence, thus enabling magnetic tuning of the structural color and transmittance at a rate of 50 Hz. As a proof‐of‐concept, it is further demonstrated that the fabrication of a multifunctional device for display, anticounterfeiting, and smart‐window applications based on this multiple magneto‐optical effect. The study not only provides a new model system for understanding colloidal assembly, but also opens up opportunities for new applications of smart optical materials for various purposes.  相似文献   

3.
Recent progress on highly tough and stretchable polymer networks has highlighted the potential of wearable electronic devices and structural biomaterials such as cartilage. For some given applications, a combination of desirable mechanical properties including stiffness, strength, toughness, damping, fatigue resistance, and self‐healing ability is required. However, integrating such a rigorous set of requirements imposes substantial complexity and difficulty in the design and fabrication of these polymer networks, and has rarely been realized. Here, we describe the construction of supramolecular polymer networks through an in situ copolymerization of acrylamide and functional monomers, which are dynamically complexed with the host molecule cucurbit[8]uril (CB[8]). High molecular weight, thus sufficient chain entanglement, combined with a small‐amount dynamic CB[8]‐mediated non‐covalent crosslinking (2.5 mol%), yields extremely stretchable and tough supramolecular polymer networks, exhibiting remarkable self‐healing capability at room temperature. These supramolecular polymer networks can be stretched more than 100× their original length and are able to lift objects 2000× their weight. The reversible association/dissociation of the host–guest complexes bestows the networks with remarkable energy dissipation capability, but also facile complete self‐healing at room temperature. In addition to their outstanding mechanical properties, the networks are ionically conductive and transparent. The CB[8]‐based supramolecular networks are synthetically accessible in large scale and exhibit outstanding mechanical properties. They could readily lead to the promising use as wearable and self‐healable electronic devices, sensors and structural biomaterials.  相似文献   

4.
Morpho butterflies are famous for their wings' brilliant structural colors arising from periodic nanostructures, which show great potential value for fundamental research and practical applications. Here, a novel cellular mechanical visualizable biosensor formed by assembling engineered cardiac tissues on the Morpho butterfly wings is presented. The assembled cardiomyocytes benefit from the periodic parallel nanoridges of the wings and can recover their autonomic beating ability with guided cellular orientation and good contraction performance. As the beating processes are accompanied by the cardiomyocytes' elongation and contraction, the elastic butterfly wing substrate undergoes the same cycle of deformations, which causes corresponding synchronous shifts in their structural colors and photonic bandgaps for self‐reporting of the cell mechanics. It is demonstrated that this self‐reporting performance can be further improved by adding oriented carbon nanotubes in the nanoridges of the wings for the culture. In addition, taking advantage of the similar size of the cardiomyocyte and a single Morpho wing scale, the investigation of single‐cell‐level mechanics can be realized by detecting the optical performance of a single scale. These remarkable properties make these butterfly wings ideal platforms for biomedical research.  相似文献   

5.
薛敏  李琪  王家伦  王星雨 《包装工程》2021,42(10):44-53
目的 总结光子晶体材料在机械力致变色方面的研究现状,基于机械力致变色光子晶体的特点进行展望,为进一步研究和应用提供参考.方法 基于机械力的施加方式,从拉伸变色和压缩变色两个方面系统介绍了机械力致变色光子晶体的制备方法、光学性能以及机械性能,并分析比较了这两种光子晶体材料的应用现状和前景.结论 机械力致变色光子晶体在结构上有多种形式,包括嵌入胶体阵列的弹性体光子晶体、胶体交联光子晶体、层状光子晶体、链状光子晶体等,近些年这些光子晶体已经可以达到明亮的结构色和应变能力.机械力致变色光子晶体因其形式的多样性和良好的光学、机械性能,使其在应力检测、人体运动状态监测、防伪、显示等方面得以应用,具有很大的实际应用潜力.  相似文献   

6.
Development of fast curing and easy modeling of colloidal photonic crystals is highly desirable for various applications. Here, a novel type of injectable photonic hydrogel (IPH) is proposed to achieve self‐healable structural color by integrating microfluidics‐derived photonic supraballs with supramolecular hydrogels. The supramolecular hydrogel is engineered via incorporating β‐cyclodextrin/poly(2‐hydroxypropyl acrylate‐coN‐vinylimidazole) (CD/poly(HPA‐co‐VI)) with methacrylated gelatin (GelMA), and serves as a scaffold for colloidal crystal arrays. The photonic supraballs derived from the microfluidics techniques, exhibit excellent compatibility with the hydrogel scaffolds, leading to enhanced assembly efficiency. By virtue of hydrogen bonds and host–guest interactions, a series of self‐healable photonic hydrogels (linear, planar, and spiral assemblies) can be facilely assembled. It is demonstrated that the spherical symmetry of the photonic supraballs endows them with identical optical responses independent of viewing angles. In addition, by taking the advantage of angle independent spectrum characteristics, the IPH presents beneficial effects in reflective cooling, which can achieve up to 17.4 °C in passive solar reflective cooling. The strategy represents an easy‐to‐perform platform for the construction of IPH, providing novel insights into macroscopic self‐assembly toward thermal management applications.  相似文献   

7.
Photonic microcapsules with onion‐like topology are microfluidically designed to have cholesteric liquid crystals with opposite handedness in their core and shell. The microcapsules exhibit structural colors caused by dual photonic bandgaps, resulting in a rich variety of color on the optical palette. Moreover, the microcapsules can switch the colors from either core or shell depending on the selection of light‐handedness.  相似文献   

8.
The mode volume and Purcell factor are two important parameters to assess the performance of optical nanocavities. Achieving small mode volumes and high Purcell factors for nanocavity structures while simplifying their fabrication has been a major task to realize high‐performance and large‐scale photonic devices and systems. Different optical resonators based on nanoparticle‐on‐mirror (NPoM) structures are systematically analyzed, which are easy to fabricate and flexible to use. Direct comparison of these optical resonators is made through finite‐difference time‐domain (FDTD) simulations. The achievement of ultrasmall mode volumes below 10?7 based on the NPoM structure through FDTD simulations is demonstrated by rationally selecting the structural parameters. Such NPoM structures provide a decent Purcell factor on the order of 107, which can effectively enhance spontaneous emission and facilitate a number of photonic applications. The simulation results are confirmed by dark field scattering and second‐harmonic generation measurements. This work is scientifically important and offers practical guidelines for the design of optical resonators for state‐of‐the‐art optical and photonic devices.  相似文献   

9.
Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red‐shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications.  相似文献   

10.
An electronic (e‐) skin is expected to experience significant wear and tear over time. Therefore, self‐healing stretchable materials that are simultaneously soft and with high fracture energy, that is high tolerance of damage or small cracks without propagating, are essential requirements for the realization of robust e‐skin. However, previously reported elastomers and especially self‐healing polymers are mostly viscoelastic and lack high mechanical toughness. Here, a new class of polymeric material crosslinked through rationally designed multistrength hydrogen bonding interactions is reported. The resultant supramolecular network in polymer film realizes exceptional mechanical properties such as notch‐insensitive high stretchability (1200%), high toughness of 12 000 J m?2, and autonomous self‐healing even in artificial sweat. The tough self‐healing materials enable the wafer‐scale fabrication of robust and stretchable self‐healing e‐skin devices, which will provide new directions for future soft robotics and skin prosthetics.  相似文献   

11.
Hollow carbon–silica nanospheres that exhibit angle‐independent structural color with high saturation and minimal absorption are made. Through scattering calculations, it is shown that the structural color arises from Mie resonances that are tuned precisely by varying the thickness of the shells. Since the color does not depend on the spatial arrangement of the particles, the coloration is angle independent and vibrant in powders and liquid suspensions. These properties make hollow carbon–silica nanospheres ideal for applications, and their potential in making flexible, angle‐independent films and 3D printed films is explored.  相似文献   

12.
Solution‐processed lead iodide (PbI2) governs the charge transport characteristics in the hybrid metal halide perovskites. Besides being a precursor in enhancing the performance of perovskite solar cells, PbI2 alone offers remarkable optical and ultrasensitive photoresponsive properties that remain largely unexplored. Here, the photophysics and the ultrafast carrier dynamics of the solution processed PbI2 thin film is probed experimentally. A PbI2 integrated metamaterial photonic device with switchable picosecond time response at extremely low photoexcitation fluences is demonstrated. Further, findings show strongly confined terahertz field induced tailoring of sensitivity and switching time of the metamaterial resonances for different thicknesses of PbI2 thin film. The approach has two far reaching consequences: the first lead‐iodide‐based ultrafast photonic device and resonantly confined electromagnetic field tailored transient nonequilibrium dynamics of PbI2 which could also be applied to a broad range of semiconductors for designing on‐chip, ultrafast, all‐optical switchable photonic devices.  相似文献   

13.
Polymer gels are remarkable materials with physical structures that can adapt significantly and quite rapidly with changes in the local environment, such as temperature, light intensity, electrochemistry, and mechanical force. An interesting phenomenon observed in certain polymer gel systems is mechanochromism – a change in color due to a mechanical deformation. Mechanochromic photonic gels are periodically structured gels engineered with a photonic stopband that can be tuned by mechanical forces to reflect specific colors. These materials have potential as mechanochromic sensors because both the mechanical and optical properties are highly tailorable via incorporation of diluents, solvents, nanoparticles, or polymers, or the application of stimuli such as temperature, pH, or electric or strain fields. Recent advances in photonic gels that display strain‐dependent optical properties are discussed. In particular, this discussion focuses primarily on polymer‐based photonic gels that are directly or indirectly fabricated via self‐assembly, as these materials are promising soft material platforms for scalable mechanochromic sensors.  相似文献   

14.
2D transition metal carbides, known as MXenes, are transparent when the samples are thin enough. They are also excellent electrical conductors with metal‐like carrier concentrations. Herein, these characteristics are exploited to replace gold (Au) in GaAs photodetectors. By simply spin‐coating transparent Ti3C2‐based MXene electrodes from aqueous suspensions onto GaAs patterned with a photoresist and lifted off with acetone, photodetectors that outperform more standard Au electrodes are fabricated. Both the Au‐ and MXene‐based devices show rectifying contacts with comparable Schottky barrier heights and internal electric fields. The latter, however, exhibit significantly higher responsivities and quantum efficiencies, with similar dark currents, hence showing better dynamic range and detectivity, and similar sub‐nanosecond response speeds compared to the Au‐based devices. The simple fabrication process is readily integratable into microelectronic, photonic‐integrated circuits and silicon photonics processes, with a wide range of applications from optical sensing to light detection and ranging and telecommunications.  相似文献   

15.
Developing nanomaterials with synergistic effects of various structural merits is considered to be an effective strategy to improve the sluggish ion kinetics and severe structural degradation of sodium‐ion battery (SIB) anodes. Herein, honeycomb‐like amorphous Zn2V2O7 (ZVO‐AH) nanofibers as SIBs anode material with plentiful defective sites, complex cavities, and good mechanical flexibility are reported. The fabrication strategy relies on the expansive and volatile nature of the organic vanadium source, based on a simple electrospinning with subsequent calcination. Originating from the synergies of amorphous nature and honeycomb‐like cavities, ZVO‐AH shows increased electrochemical activity, accelerated Na‐ion diffusion, and robust structure. Impressively, the ZVO‐AH anode delivers superior cycle stability (112% retention at 5 A g?1 after 5000 cycles) and high rate capability (150 mAh g?1 at 10 A g?1). The synthetic versatility is able to synergistically promote the practical application of more potential materials in sodium‐ion storage.  相似文献   

16.
Photonic crystals (PCs) are ideal candidates for reflective color pigments with high color purity and brightness due to tunable optical stop band. Herein, the generation of PC microspheres through 3D confined supramolecular assembly of block copolymers (polystyrene‐block‐poly(2‐vinylpyridine), PS‐b‐P2VP) and small molecules (3‐n‐pentadecylphenol, PDP) in emulsion droplets is demonstrated. The intrinsic structural colors of the PC microspheres are effectively regulated by tuning hydrogen‐bonding interaction between P2VP blocks and PDP, where reflected color can be readily tuned across the whole visible spectrum range. Also, the effects of both PDP and homopolymer (hPS) on periodic structure and optical properties of the microspheres are investigated. Moreover, the spectral results of finite element method (FEM) simulation agree well with the variation of structural colors by tuning the periodicity in PC microspheres. The supramolecular microspheres with tunable intrinsic structural color can be potentially useful in the various practical applications including display, anti‐counterfeit printing and painting.  相似文献   

17.
Perovskite light‐emitting diodes (PeLEDs) show great application potential in high‐quality flat‐panel displays and solid‐state lighting due to their steadily improved efficiency, tunable colors, narrow emission peak, and easy solution‐processing capability. However, because of high optical confinement and nonradiative charge recombination during electron–photon conversion, the highest reported efficiency of PeLEDs remains far behind that of their conventional counterparts, such as inorganic LEDs, organic LEDs, and quantum‐dot LEDs. Here a facile route is demonstrated by adopting bioinspired moth‐eye nanostructures at the front electrode/perovskite interface to enhance the outcoupling efficiency of waveguided light in PeLEDs. As a result, the maximum external quantum efficiency and current efficiency of the modified cesium lead bromide (CsPbBr3) green‐emitting PeLEDs are improved to 20.3% and 61.9 cd A?1, while retaining spectral and angular independence. Further reducing light loss in the substrate mode using a half‐ball lens, efficiencies of 28.2% and 88.7 cd A?1 are achieved, which represent the highest values reported to date for PeLEDs. These results represent a substantial step toward achieving practical applications of PeLEDs.  相似文献   

18.
Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self‐healing and self‐recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self‐healing hydrogels generally either possess mechanically robust or rapid self‐healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self‐healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self‐healing hydrogels are reviewed. Specifically, methods to test self‐healing efficiencies and recoveries, mechanisms of autonomous self‐healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self‐heal better also achieve self‐healing faster, as compared to gels that only partially self‐heal. Recommendations to guide future development of self‐healing hydrogels are offered and the potential relevance of self‐healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.  相似文献   

19.
High‐performance nanostructured electro‐optical switches and logic gates are highly desirable as essential building blocks in integrated photonics. In contrast to silicon‐based optoelectronic devices, with their inherent indirect optical bandgap, weak light‐modulation mechanism, and sophisticated device configuration, direct‐bandgap‐semiconductor nanostructures with attractive electro‐optical properties are promising candidates for the construction of nanoscale optical switches for on‐chip photonic integrations. However, previously reported semiconductor‐nanostructure optical switches suffer from serious drawbacks such as high drive voltage, limited operation spectral range, and low modulation depth. High‐efficiency electro‐optical switches based on single CdS nanobelts with low drive voltage, ultra‐high on/off ratio, and broad operation wavelength range, properties resulting from unique electric‐field‐dependent phonon‐assisted optical transitions, are demonstrated. Furthermore, functional NOT, NOR, and NAND optical logic gates are demonstrated based on these switches. These switches and optical logic gates represent an important step toward integrated photonic circuits.  相似文献   

20.
Inspired by Steller's jay, which displays angle‐independent structural colors, angle‐independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer‐sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on–off system is successfully built by controlling the background brightness of the colloidal amorphous arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号