首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human‐machine interfaces because of their simple device structure and easy‐readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low‐cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray‐coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa−1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin.  相似文献   

2.
Achieving high sensitivity over a broad pressure range remains a great challenge in designing piezoresistive pressure sensors due to the irreconcilable requirements in structural deformability against extremely high pressures and piezoresistive sensitivity to very low pressures. This work proposes a hybrid aerogel/hydrogel sensor by integrating a nanotube structured polypyrrole aerogel with a polyacrylamide (PAAm) hydrogel. The aerogel is composed of durable twined polypyrrole nanotubes fabricated through a sacrificial templating approach. Its electromechanical performance can be regulated by controlling the thickness of the tube shell. A thicker shell enhances the charge mobility between tube walls and thus expedites current responses, making it highly sensitive in detecting low pressure. Moreover, a nucleotide-doped PAAm hydrogel with a reversible noncovalent interaction network is harnessed as the flexible substrate to assemble the aerogel/hydrogel hybrid sensor and overcome sensing saturation under extreme pressures. This highly stretchable and self-healable hybrid polymer sensor exhibits linear response with high sensitivity (Smin > 1.1 kPa?1), ultrabroad sensing range (0.12–≈400 kPa), and stable sensing performance over 10 000 cycles at the pressure of 150 kPa, making it an ideal sensing device to monitor pressures from human physiological signals to significant stress exerted by vehicles.  相似文献   

3.
The development of omnidirectionally stretchable pressure sensors with high performance without stretching‐induced interference has been hampered by many challenges. Herein, an omnidirectionally stretchable piezoresistive pressure‐sensing device is demonstrated by combining an omniaxially stretchable substrate with a 3D micropattern array and solution‐printing of electrode and piezoresistive materials. A unique substrate structural design and materials mean that devices that are highly sensitive are rendered, with a stable out‐of‐plane pressure response to both static (sensitivity of 0.5 kPa?1 and limit of detection of 28 Pa) and dynamic pressures and the minimized in‐plane stretching responsiveness (a small strain gauge factor of 0.17), achieved through efficient strain absorption of the electrode and sensing materials. The device can detect human‐body tremors, as well as measure the relative elastic properties of human skin. The omnidirectionally stretchable pressure sensor with a high pressure sensitivity and minimal stretch‐responsiveness yields great potential to skin‐attachable wearable electronics, human–machine interfaces, and soft robotics applications.  相似文献   

4.
A pressure sensor based on irregular microhump patterns has been proposed and developed. The devices show high sensitivity and broad operating pressure regime while comparing with regular micropattern devices. Finite element analysis (FEA) is utilized to confirm the sensing mechanism and predict the performance of the pressure sensor based on the microhump structures. Silicon carbide sandpaper is employed as the mold to develop polydimethylsiloxane (PDMS) microhump patterns with various sizes. The active layer of the piezoresistive pressure sensor is developed by spin coating PEDOT:PSS on top of the patterned PDMS. The devices show an averaged sensitivity as high as 851 kPa?1, broad operating pressure range (20 kPa), low operating power (100 nW), and fast response speed (6.7 kHz). Owing to their flexible properties, the devices are applied to human body motion sensing and radial artery pulse. These flexible high sensitivity devices show great potential in the next generation of smart sensors for robotics, real‐time health monitoring, and biomedical applications.  相似文献   

5.
针对压阻式压力传感器因热零点漂移、热灵敏度改变以及热迟滞效应引起的误差,提出一种压阻式压力传感器全温区温度补偿方法.该方法是在温升和温降全温区样本采集的数据基础上,采用最小二乘法曲面拟合原理对压阻式压力传感器进行数字补偿.通过对传感器进行实验标定和误差分析,并与常用的单一温升样本采集并进行数字补偿的方法进行对比,结果表...  相似文献   

6.
积冰作为一种常见的自然现象,给航空、电力和道路交通等方面带来了极大安全隐患。本文利用膨胀石墨优异的导电性和聚二甲基硅氧烷良好的柔韧性与疏水性,制备具有探冰与电热除冰功能为一体的膨胀石墨/聚二甲基硅氧烷的复合材料(Expandable graphite/polydimethylsiloxane, EG/PDMS),并研究其疏水性、压阻性能和电热效应。结果表明,EG/PDMS复合材料传感器压力灵敏度最大为0.15 kPa?1,且能在10~110 kPa大范围内产生线性压阻反应;在电加热过程中,当输入电压为30 V、输入电流为0.05 A时,最高平衡温度为94.7℃,完全融化10 g冰的时间为166 s。EG/PDMS复合材料不仅可以监测其表面积冰厚度变化,还可通电加热除冰,在探冰/除冰领域具有较大的应用价值。   相似文献   

7.
以通用有效介质理论为基础, 给出了炭黑填充导电橡胶(炭黑/橡胶)的力敏传感器灵敏系数计算方程。采用该方程并结合应变和压阻效应对"负压力-电阻特性"(NPC)的影响程度, 分析了力敏导电炭黑/橡胶的灵敏系数和工作原理。结果表明: 炭黑体积分数在临界体积分数附近时, 力敏导电炭黑/橡胶的灵敏系数在2.5~13之间, 其工作原理主要为压阻效应。当炭黑体积分数在渗流区时, 灵敏系数在2.5~4.5之间, 其工作原理与接触压力的大小有关。压力较小时, 其工作原理主要为压阻效应; 压力较大时, 其工作原理主要为应变效应。炭黑体积分数在传导区时, 灵敏系数在2.0~2.5之间, 其工作原理主要为应变效应。   相似文献   

8.
使用美国ICSENSOR公司的压阻硅式绝压传感器,对静压进行测量,并设计出适合超小型无人机使用的新型定高传感器,这种定高传感器具有灵敏度高,重量轻,单电源供电,板式结构。可靠性高,重复性好的特点,填补了应用于超小型无人机的定高传感器产品的空白。  相似文献   

9.
Hydrogen detection with a high sensitivity is necessary for preventing potential explosions and fire.In this study,a novel ZnO tribotronic transistor is developed by coupling a ZnO field effect transistor (FET) and triboelectric nanogenerator in free-standing mode and is used as a sensor for hydrogen detection at room temperature.Tribotronic modulated performances of the hydrogen sensor are demonstrated by investigating its output characteristics at different sliding distances and hydrogen concentrations.By applying an external mechanical force to the device for sliding electrification,the detection sensitivity of the ZnO tribotronic transistor sensor is improved,with a significant enhancement achieved in output current by 62 times at 500 ppm hydrogen and 1 V bias voltage.This study demonstrates an extension of the applications of emerging tribotronics for gas detection and a prospective approach to improve the performance of the hydrogen sensor via human-interfacing.  相似文献   

10.
以通用有效介质理论为基础, 给出了炭黑填充导电橡胶(炭黑/橡胶)的力敏传感器灵敏度计算方程。采用该方程并结合形变和压阻效应, 分析了影响力敏导电炭黑/橡胶的灵敏度的主要参数。结果表明: 炭黑体积分数是影响力敏导电炭黑/橡胶的灵敏度的主要参数。当炭黑体积分数在临界体积分数附近时, 力敏导电炭黑/橡胶的灵敏度为0.1~11.5 MPa-1, 其敏感机制主要为压阻效应。当炭黑体积分数在渗流区时, 灵敏度为0.2~3.6 MPa-1, 其敏感机制还与接触压力的大小有关, 压力较小时, 主要为压阻效应; 压力较大时, 主要为应变效应。若炭黑体积分数在传导区, 灵敏度为0.3~1.7 MPa-1, 其敏感机制主要为应变效应。  相似文献   

11.
Abstract

In this study, a packaged silicon base piezoresistive pressure sensor with thermal stress buffer is designed, fabricated, and studied. A finite element method (FEM) is adopted for designing and optimizing the sensor performance. Thermal and pressure loading on the sensor is applied to make a comparison between experimental and simulation results. Furthermore, a method that transforms simulation stress data into output voltage is proposed in this study, and the results indicate that the experimental result coincides with the simulation data. In order to achieve better sensor performance, a parametric analysis is performed to evaluate the system sensitivity, as well as thermal and packaging effects of the pressure sensor. The design parameters of the pressure sensor include membrane size, sensor chip size, glass thickness, adhesive layer thickness, PCB thickness/material, etc. The findings show that proper selection of the sensor structure and material not only enhances the sensor sensitivity but also reduces the thermal effects as well as the packaging influence.  相似文献   

12.
压阻式硅微二维加速度计的加工与测试   总被引:4,自引:0,他引:4  
提出了一种压阻式的硅微二维加速度计,该加速度计采用4个相互垂直的悬臂梁支撑中间有刚硬柱体的结构,利用合理布置的压敏电阻构成的惠斯通电桥测量水平面内两个方向的加速度.结合微结构的力学分析模型以及压阻原理分析了加速度计的灵敏特性、采用硅微机械加工工艺完成了加速度计的加工,应用微系统分析仪、激光拉曼光谱应力测试仪以及振动台分别对加工出的微结构形貌、残余应力、频响以及灵敏特性进行了相关测试.测试结果表明,两个方向的输出值均灵敏度高、线形度较好,胸灵敏度为1、0174mV/g(g为重力加速度),线性系数为0.99991,y向灵敏度为0.89761mV/g,线性系数为0.99945.微加速度计的频响曲线较为平坦,其共振频率大约为670Hz.  相似文献   

13.
Tunneling junction is used in many devices such as high‐frequency oscillators, nonvolatile memories, and magnetic field sensors. In these devices, modulation on the barrier width and/or height is usually realized by electric field or magnetic field. Here, a new piezotronic tunneling junction (PTJ) principle, in which the quantum tunneling is controlled/tuned by externally applied mechanical stimuli, is proposed. In these metal/insulator/piezoelectric semiconductor PTJs, such as Pt/Al2O3/p‐GaN, the height and the width of the tunneling barriers can be mechanically modulated via the piezotronic effect. The tunneling current characteristics of PTJs exhibit critical behavior as a function of external mechanical stimuli, which results in high sensitivity (≈5.59 mV MPa?1), giant switching (>105), and fast response (≈4.38 ms). Moreover, the mechanical controlling of tunneling transport in PTJs with various thickness of Al2O3 is systematically investigated. The high performance observed with these metal/insulator/piezoelectric semiconductor PTJs suggest their great potential in electromechanical technology. This study not only demonstrates dynamic mechanical controlling of quantum tunneling, but also paves a way for adaptive interaction between quantum tunneling and mechanical stimuli, with potential applications in the field of ultrasensitive press sensor, human–machine interface, and artificial intelligence.  相似文献   

14.
许可  吴成东  刘剑  李孟歆 《纳米科技》2012,(3):19-22,73
为了提高NO2气体检测的灵敏度和速度,以单壁碳纳米管(SWCNT)为装配介质,采用介电电泳方法获得单壁碳纳米管场效应晶体管(SWCNT—FET)作为气体传感器检测装置,通过原子力显微镜(AFM)和扫描电子显微镜(SEM)表征,结果显示,利用介电电泳方法能够成功地把SWCNTs装配到芯片的源漏两极间;通入NO2气体前后电特性变化情况的测试结果表明,选择接入电场频率为2MHz,峰峰值电压10V,介电电泳持续时间10s时,制备出SWCNT—FET成功率高,通入NO2气体后的电导率增加三个数量级。利用紫外光持续照射10min,SWCNT上的气体分子解附,使气体传感器可重复利用。  相似文献   

15.
Ferroelectric materials use both the pyroelectric effect and piezoelectric effect for energy conversion. A ferroelectric BaTiO3‐based pyro‐piezoelectric sensor system is demonstrated to detect temperature and pressure simultaneously. The voltage signal of the device is found to enhance with increasing temperature difference with a sensitivity of about 0.048 V °C?1 and with applied pressure with a sensitivity of about 0.044 V kPa?1. Moreover, no interference appears in the output voltage signals when piezoelectricity and pyroelectricity are conjuncted in the device. A novel 4 × 4 array sensor system is developed to sense real‐time temperature and pressure variations induced by a finger. This system has potential applications in machine intelligence and man–machine interaction.  相似文献   

16.
Black phosphorus (BP) has been recently unveiled as a promising 2D direct bandgap semiconducting material. Here, ambipolar field‐effect transistor behavior of nanolayers of BP with ferromagnetic tunnel contacts is reported. Using TiO2/Co contacts, a reduced Schottky barrier <50 meV, which can be tuned further by the gate voltage, is obtained. Eminently, a good transistor performance is achieved in the devices discussed here, with drain current modulation of four to six orders of magnitude and a mobility of μh ≈ 155 cm2 V?1 s?1 for hole conduction at room temperature. Magnetoresistance calculations using a spin diffusion model reveal that the source–drain contact resistances in the BP device can be tuned by gate voltage to an optimal range for injection and detection of spin‐polarized holes. The results of the study demonstrate the prospect of BP nanolayers for efficient nanoelectronic and spintronic devices.  相似文献   

17.
A versatile flexible piezoresistive sensor should maintain high sensitivity in a wide linear range, and provide a stable and repeatable pressure reading under bending. These properties are often difficult to achieve simultaneously with conventional filler–matrix composite active materials, as tuning of one material component often results in change of multiple sensor properties. Here, a material strategy is developed to realize a 3D graphene–poly(dimethylsiloxane) hollow structure, where the electrical conductivity and mechanical elasticity of the composite can be tuned separately by varying the graphene layer number and the poly(dimethylsiloxane) composition ratio, respectively. As a result, the sensor sensitivity and linear range can be easily improved through a decoupled tuning process, reaching a sensitivity of 15.9 kPa?1 in a 60 kPa linear region, and the sensor also exhibits fast response (1.2 ms rising time) and high stability. Furthermore, by optimizing the density of the graphene percolation network and thickness of the composite, the stability and repeatability of the sensor output under bending are improved, achieving a measurement error below 6% under bending radius variations from ?25 to +25 mm. Finally, the potential applications of these sensors in wearable medical devices and robotic vision are explored.  相似文献   

18.
Flexible piezoresistive sensors with biological structures are widely exploited for high sensitivity and detection. However, the conventional bionic structure pressure sensors usually suffer from irreconcilable conflicts between high sensitivity and wide detection response range. Herein, a triple periodic minimum surface (TPMS) structure sensor is proposed based on parametric structural design and 3D printing techniques. Upon tailoring of the dedicated structural parameters, the resulting sensors exhibit superior compression durability, high sensitivity, and ultra–high detection range, that enabling it meets the needs of various scenes. As a model system, TPMS structure sensor with 40.5% porosity exhibits an ultra–high sensitivity (132 kPa−1 in 0–5.7 MPa), wide detection strain range (0–31.2%), high repeatability and durability (1000 cycles in 4.41 MPa, 10000 s in 1.32 MPa), and low detection limit (1% in 80 kPa). The stress/strain distributions have been identified using finite element analysis. Toward practical applications, the TPMS structural sensors can be applied to detect human activity and health monitoring (i.e., voice recognition, finger pressure, sitting, standing, walking, and falling down behaviors). The synergistic effects of MWCNTs and MXene conductive network also ensure the composite further being utilized for electromagnetic interference shielding applications.  相似文献   

19.
The development of pressure sensors is crucial for the implementation of electronic skins and for health monitoring integrated into novel wearable devices. Tremendous effort is devoted toward improving their sensitivity, e.g., by employing microstructured electrodes or active materials through cumbersome processes. Here, a radically new type of piezoresistive pressure sensor based on a millefeuille‐like architecture of reduced graphene oxide (rGO) intercalated by covalently tethered molecular pillars holding on‐demand mechanical properties are fabricated. By applying a tiny pressure to the multilayer structure, the electron tunnelling ruling the charge transport between successive rGO sheets yields a colossal decrease in the material's electrical resistance. Significantly, the intrinsic rigidity of the molecular pillars employed enables the fine‐tuning of the sensor's sensitivity, reaching sensitivities as high as 0.82 kPa?1 in the low pressure region (0–0.6 kPa), with short response times (≈24 ms) and detection limit (7 Pa). The pressure sensors enable efficient heartbeat monitoring and can be easily transformed into a matrix capable of providing a 3D map of the pressure exerted by different objects.  相似文献   

20.
In this paper, the piezoresistive pressure-sensing property of porous silicon has been reported. The pressure sensitivity of a porous silicon membrane of 63% porosity and 20-/spl mu/m thickness has been observed to be about three times more than that of a conventional bulk silicon membrane of the same dimensions. The increased sensitivity is attributed to the improvement in piezoresistance due to quantum confinement in the porous silicon nanostructure. The piezoresistive coefficient of porous silicon is estimated for the first time and is observed to be about 50% larger than that of monocrystalline silicon for a 63% porosity porous silicon membrane. The response time has also been studied and observed to be significantly shorter. Power dissipation of the porous silicon pressure sensor is also much less compared to that of commercial bulk silicon piezoresistive pressure sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号