首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fluorescent silica nanoparticles (FSNs) are prepared by incorporating dye into a mesoporous silica nanoparticle (MSN) synthesis procedure. FSNs containing sulforhodamine B, hydrophobically modified sulforhodamine B, and Cascade Blue hydrazide are made. The MSN‐based FSNs do not leach dye under simulated physiological conditions and have strong, stable fluorescence. FSNs prepared with sulforhodamine B are compared to FSNs prepared with hydrophobically modified sulforhodamine B. The data indicate that FSNs prepared with sulforhodamine B are equally as stable but twice as fluorescent as particles made with hydrophobically modified sulforhodamine B. The fluorescence of a FSN prepared with sulforhodamine B is 10 times more intense than the fluorescence of a 4.5 nm core–shell CdSe/ZnS quantum dot. For diagnostic applications, a method to selectively and covalently bind antibodies to the surface of the FSNs is devised. FSNs that are functionalized with antibodies specific for Neisseria gonorrhoeae specifically bind to Neisseria gonorrhoeae in flow cytometry experiments, thus demonstrating the functionality of the attached antibodies and the potential of MSN‐based FSNs to be used in diagnostic applications.  相似文献   

2.
Novel, thiol‐functionalized, and superparamagnetic, silica composite nanospheres (SH‐SSCNs) with diameters smaller than 100 nm are successfully fabricated through the self‐assembly of Fe3O4 nanoparticles and polystyrene100block‐poly(acrylic acid)16 and a subsequent sol‐gel process. The size and magnetic properties of the SH‐SSCNs can be easily tuned by simply varying the initial concentrations of the magnetite nanoparticles in the oil phase. By incorporating fluorescent dye molecules into the silica network, the composite nanospheres can be further fluorescent‐functionalized. The toxicity of the SH‐SSCNs is evaluated by choosing three typical cell lines (HUVEC, RAW264.7, and A549) as model cells, and no toxic effects are observed. It is also demonstrated that SH‐SSCNs can be used as a new class of magnetic resonance imaging (MRI) probes, having a remarkably high spin–spin (T2) relaxivity (r2* = 176.1 mM ?1 S?1). The combination of the sub‐100‐nm particle size, monodispersity in aqueous solution, superparamagnetism, and fluorescent properties of the SH‐SSCNs, as well as the non‐cytotoxicity in vitro, provides a novel and potential candidate for an earlier MRI diagnostic method of cancer.  相似文献   

3.
Graphene quantum dots (GQDs) with white fluorescence are synthesized by a microwave‐assisted hydrothermal method using graphite as the precursor. A solution‐processed white‐light‐emitting diode (WLED) is fabricated using the as‐prepared white fluorescent GQDs (white‐light‐emitting graphene quantum dots, WGQDs) doped 4,4‐bis(carbazol‐9‐yl)biphenyl as the emissive layer. White‐light emission is obtained from the WLED with 10 wt% doping concentration of WGQDs, which shows a luminance of 200 cd m?2 at the applied voltage of 11–14 V. Importantly, an external quantum efficiency of 0.2% is achieved, which is the highest among all the reported WLED based on GQDs or carbon dots. The results demonstrate that WGQDs as a novel phosphor may open up a new avenue to develop the environmentally friendly WLEDs for practical application in solid‐state lighting.  相似文献   

4.
A class of novel core/shell near‐IR fluorescent nanoparticles have been prepared through co‐hydrolysis of a hydrophobic silicon alkoxide, hexadecyltrimethoxysilane, and tetraethyl orthosilicate as the dye‐doped core, followed by the formation of a hydrophilic shell via hydrolysis of tetraethyl orthosilicate in a water‐in‐oil microemulsion. The co‐hydrolysis of hexadecyltrimethoxysilane and tetraethyl orthosilicate produces a highly hydrophobic core for the entrapment of a low‐cost near‐IR fluorescence dye, methylene blue. Experimental investigation of this particular core/shell nanoparticle in comparison with conventional dye‐doped silica nanoparticles demonstrates that the hydrophobic core enables the doped dye to exhibit enhanced fluorescence and show improved stability to dye leaching and exogenous quenchers. In contrast to rhodamine B doped silica nanoparticles, the near‐IR fluorescent nanoparticles also show negligible background fluorescence and low inner‐filtration interference in complex biological systems such as whole blood. This advantage is utilized for the development of an immunoagglutination assay method based on fluorescence‐anisotropy measurement for the detection of alpha fetoprotein (AFP) in whole‐blood samples. The results reveal that increase in fluorescence anisotropy is linearly correlated with AFP concentration in the range 1.9–51.9 ng mL–1.  相似文献   

5.
RuO2@SiO2 nanomaterials are prepared using hybrid mesostructured silica (EtO)2P(O)(CH2)3SiO1.5/x SiO2 (x = 9, 16) by anchoring the metal precursor [Ru(COD)(COT)] (COD is 1,3‐cyclooctadiene, COT is 1,3,5‐cyclooctatriene) inside the pores of the organized silica matrix through the phosphonate moieties. Following this task, the nanoparticles are fabricated by i) decomposing the metal precursor with hydrogen at room temperature in tetrahydrofuran to achieve ruthenium nanoparticles and ii) thermally treating the ruthenium particles in silica at 450 °C in air to fabricate RuO2. The materials containing Ru and RuO2 nanoparticles are characterized by elemental analysis, transmission electron microscopy (TEM), X‐ray diffraction (XRD), nitrogen sorption measurements, and 31P and 13C NMR. The obtained RuO2@SiO2 nanomaterials are evaluated as catalytic filters when deposited onto gas sensors for the preferential detection of propane in the multicomponent gas mixture propane/carbon monoxide/nitrogen dioxide.  相似文献   

6.
Transition metal‐based nanoparticles have shown their broad applications in versatile biomedical applications. Although traditional iron‐based nanoparticles have been extensively explored in biomedicine, transition metal manganese (Mn)‐based nanoparticulate systems have emerged as a multifunctional nanoplatform with their intrinsic physiochemical property and biological effect for satisfying the strict biomedical requirements. This comprehensive review focuses on recent progress of Mn‐based functional nanoplatforms in biomedicine with the particular discussion on their elaborate construction, physiochemical property, and theranostic applicability. Several Mn‐based nanosystems are discussed in detail, including solid/hollow MnOx nanoparticles, 2D MnOx nanosheets, MnOx‐silica/mesoporous silica nanoparticles, MnOx‐Fe3O4 nanoparticles, MnOx‐Au, MnOx‐fluorescent nanoparticles, Mn‐based organic composite nanosystem, and some specific/unique Mn‐based nanocomposites. Their versatile biomedical applications include pH/reducing‐responsive T1‐weighted positive magnetic resonance imaging, controlled drug loading/delivery/release, protection of neurological disorder, photothermal hyperthermia, photodynamic therapy, chemodynamic therapy, alleviation of tumor hypoxia, immunotherapy, and some specific synergistic therapies, which are based on their disintegration behavior under the mildly acidic/reducing condition, multiple enzyme‐mimicking activity, catalytic‐triggering Fenton reaction, etc. The biological effects and biocompatibility of these Mn‐based nanosystems are also discussed, accompanied with a discussion on challenges/critical issues and an outlook on the future developments and clinical‐translation potentials of these intriguing Mn‐based functional nanoplatforms.  相似文献   

7.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized by Wang and co‐workers on p. 957. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue and orange emission from the corresponding emitting species. A single‐layer device has been fabricated that has performance characteristics roughly comparable to those of organic white‐light‐emitting diodes with multilayer device structures. New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

8.
The tremendous development of nanotechnology is bringing us closer to the dream of clinical application of nanoparticles in photothermal therapies of tumors. This requires the use of specific nanoparticles that must be highly biocompatible, efficient light‐to‐heat converters and fluorescent markers. Temperature reading by the heating nanoparticles during therapy appears of paramount importance to keep at a minimum the collateral damage that could arise from undesirable excessive heating. In this work, this thermally controlled therapy is possible by using Nd3+ ion‐doped LaF3 nanocrystals. Because of the particular optical features of Nd3+ ions at high doping concentrations, these nanoparticles are capable of in vivo photothermal heating, fluorescent tumor localization and intratumoral thermal sensing. The successful photothermal therapy experiments here presented highlight the importance of controlling therapy parameters based on intratumoral temperature measurements instead of on the traditionally used skin temperature measurements. In fact, significant differences between intratumoral and skin temperatures do exist and could lead to the appearance of excessive collateral damage. These results open a new avenue for the real application of nano­particle‐based photothermal therapy at clinical level.  相似文献   

9.
All autonomous machines share the same requirement—namely, they need some form of energy to perform their operations and nanovalves are no exception. Supramolecular nanovalves constructed from [2]pseudorotaxanes—behaving as dissociatable complexes attached to mesoporous silica which acts as a supporting platform and reservoir—rely on donor‐acceptor and hydrogen bonding interactions between the ring component and the linear component to control the ON and OFF states. The method of operation of these supramolecular nanovalves involves primarily the weakening of these interactions. The [2]pseudorotaxane [BHEEEN ? CBPQT]4+ [BHEEEN ≡ 1,5‐bis[2‐(2‐(2‐hydroxyethoxy)ethoxy)ethoxy]naphthalene and CBPQT4+ ≡ cyclobis(paraquat‐p‐phenylene)], when this 1:1 complex is tethered on the surface of the mesoporous silica, constitutes the supramolecular nanovalves. The mesoporous silica is charged against a concentration gradient with luminescence probe molecules, e.g., tris(2,2′‐phenylpyridyl)iridium(III ), Ir(ppy)3 (ppy = 2,2′‐phenylpyridyl), followed by addition of CBPQT·4Cl to form the tethered [2]pseudorotaxanes. This situation corresponds to the OFF state of the supramolecular nanovalves. Their ON state can be initiated by reducing the CBPQT4+ ring with NaCNBH3, thus weakening the complexation and causing dissociation of the CBPQT4+ ring away from the BHEEEN stalks on the mesoporous silica particles MCM‐41 to bring about ultimately the controlled release of the luminescence probe molecules from the mesoporous silica particles with an average diameter of 600 nm. This kind of functioning supramolecular system can be reconfigured further with built‐in photosensitizers, such as tethered 9‐anthracenecarboxylic acid and tethered [Ru(bpy)2(bpy(CH2OH)2)]2+ (bpy = 2,2′‐bipyridine). Upon irradiation with laser light of an appropriate wavelength, the excited photosensitizers transfer electrons to the near‐by CBPQT4+ rings, reducing them so that they dissociate away from the BHEEEN stalks on the surface of the mesoporous silica particles, leading subsequently to a controlled release of the luminescent probe molecules. This control can be expressed in both a regional and temporal manner by the use of light as the ON/OFF stimulus for the supramolecular nanovalves.  相似文献   

10.
A series of new hybrid organic‐inorganic molecules were prepared either by grafting of aminopropyltriethoxysilane (APTS) on silica nanoparticles followed by quaternarization of the nitrogen with ethyl, heptyl and isopropyl iodides or by grafting of N,N,N‐triethyl‐3‐(triethoxysilyl)propan‐1‐aminium iodide and N,N,N‐tridodecyl‐3‐(triethoxysilyl)propan‐1‐aminium iodide onto the silica nanoparticles. These new materials were used as iodide sources in the preparation of electrolyte solutions for dye‐sensitized solar cells (DSSCs). The performance of DSSCs was studied as a function of the nature of the solvent, the nature of the dye, the concentration of the modified silica in the electrolyte system and the silica content introduced during the hybrid synthesis. An efficiency of 8.5 % was obtained for solar cells containing the triethyl ammonium iodide salt at a concentration of 1 M in either acetonitrile (AN) or 3‐methoxypropionitrile (MPN) under an illumination of 10 mW cm–2, the equivalent of 0.1 Sun at AM 1.5G. At 1 Sun (100 mW cm–2, efficiencies of 6.6 % and 5.1 % were recorded for the AN and MPN‐based electrolytes, respectively.  相似文献   

11.
An efficient orange‐light‐emitting polymer (PFTO‐BSeD5) has been developed through the incorporation of low‐bandgap benzoselenadiazole (BSeD) moieties into the backbone of a blue‐light‐emitting polyfluorene copolymer (PFTO poly{[9,9‐bis(4‐(5‐(4‐tert‐butylphenyl)‐[1,3,4]‐oxadiazol‐2‐yl)phenyl)‐9′,9′‐di‐n‐octyl‐[2,2′]‐bifluoren‐7,7′‐diyl]‐stat‐[9,9‐bis(4‐(N,N‐di(4‐n‐butylphenyl)amino)phenyl)‐9′,9′‐di‐n‐octyl‐[2,2′]‐bifluoren‐7,7′‐diyl]}) that contains hole‐transporting triphenylamine and electron‐transporting oxadiazole pendent groups. A polymer light‐emitting device based on this copolymer exhibits a strong, bright‐orange emission with Commission Internationale de L'Eclairage (CIE) color coordinates (0.45,0.52). The maximum brightness is 13 716 cd m–2 and the maximum luminance efficiency is 5.53 cd A–1. The use of blends of PFTO‐BSeD5 in PFTO leads to efficient and stable white‐light‐emitting diodes—at a doping concentration of 9 wt %, the device reaches its maximum external quantum efficiency of 1.64 % (4.08 cd A–1). The emission color remains almost unchanged under different bias conditions: the CIE coordinates are (0.32,0.33) at 11.0 V (2.54 mA cm–2, 102 cd m–2) and (0.31,0.33) at 21.0 V (281 mA cm–2, 7328 cd m–2). These values are very close to the ideal CIE chromaticity coordinates for a pure white color (0.33,0.33).  相似文献   

12.
This paper presents a new strategy to develop efficient organic light‐emitting devices (OLEDs) by doping fluorescent‐ and phosphorescent‐type emitters individually into two different hosts separated by an interlayer to form a fluorescence–interlayer–phosphorescence (FIP) emission architecture. One blue OLED with FIP emission structure comprising p‐bis(pN,N‐diphenylaminostyryl)benzene (DSA‐Ph) and bis[(4,6‐di‐fluorophenyl)‐pyridinate‐N,C2']picolinate (FIrpic) exhibiting a peak luminance efficiency of 15.8 cd A?1 at 1.54 mA cm?2 and a power efficiency of 10.2 lm W?1 at 0.1 mA cm?2 is successfully demonstrated. The results are higher than those of typical phosphorescent OLEDs with a single emission layer by 34% and 28%, respectively. From experimental and theoretical investigations on device performance, and the functions of the used emitters and interlayer, such enhancement should ascribe to the appropriate utilization of the two types of emitters. The fluorescent emitter of DSA‐Ph is used to facilitate the carrier transport, and thus accelerate the generation of excitons, while the phosphorescent emitter of FIrpic could convert the generated excitons into light efficiently. The method proposed here can be applied for developing other types of red, green, and white OLEDs.  相似文献   

13.
Highly efficient and fully solution‐processed white organic light‐emitting diodes (WOLEDs) based on fluorescent small molecules and a polar conjugated polymer as electron‐injection material are reported. The emitting layer in the WOLEDs is a blend of new blue‐, green‐, and red‐fluorescent small molecules, with a blending ratio of 100:0.4:0.8 (B/G/R) by weight, and a methanol/water soluble conjugated polymerpoly[(9,9‐bis(30‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐2,7‐(9,9‐dioctylfluorene)] (PFN) acts as the electron‐injection layer (EIL). All the organic layers are spin‐coated from solution. The device exhibits pure white emission with a maximum luminous efficiency of 9.2 cd A?1 and Commission Internationale d'Eclairage Coordinates of (0.35, 0.36). PFN acting as the EIL material plays a key role in the improvement of the device performance when used in solution‐processed small‐molecule WOLEDs.  相似文献   

14.
Poly(9,9‐dioctylfluorene‐alt‐thiophene copolymer (PDOFT) is functionalized with thiol and end‐capped with in‐situ‐reduced gold nanoparticles (AuNPs). The molecular structure of the resulting material (PDOFT‐Au) is corroborated by 1H and 13C NMR spectroscopy, and direct evidence for the binding between the PDOFT‐bis‐4‐thiol and gold nanoparticles is provided from X‐ray photoelectron spectroscopy. PDOFT‐Au is not only soluble in common organic solvents, but also has a broad range of thermal stability, up to 414 °C. The photoluminescence and electroluminescence spectra show that excitation of PDOFT is virtually unaffected by the end‐capping with gold nanoparticles. However, atomic force microscopy shows that the root‐mean‐square roughness of the PDOFT‐Au film is nearly ten times higher than that of the PDOFT film, resulting in an increased interfacial area between the film and the deposited cathode in a PDOFT‐Au device. This increased interfacial area, together with the photo‐oxidation‐suppressing and hole‐blocking characteristics of AuNPs, significantly enhances the electron injection, lowers the threshold voltage, and increases the electroluminescence (10 521 cd m–2) and photometric efficiency (1.986 cd A–1) of the PDOFT‐Au device by nearly an order of magnitude. These increases in electroluminescence and photometric efficiency would be much lower if AuNPs were blended into—rather than capped onto—the copolymer. The Commission International de L'Eclairage color coordinates of PDOFT‐Au (0.237,0.655) are very close to the standard green demanded by the National Television System Committee, making PDOFT‐Au an excellent candidate for a green‐light‐emitting material.  相似文献   

15.
New single‐polymer electroluminescent systems containing two individual emission species—polyfluorenes as a blue host and 2,1,3‐benzothiadiazole derivative units as an orange dopant on the main chain—have been designed and synthesized. The resulting single polymers are found to have highly efficient white electroluminescence with simultaneous blue (λmax = 421 nm/445 nm) and orange emission (λmax = 564 nm) from the corresponding emitting species. The influence of the photoluminescence (PL) efficiencies of both the blue and orange species on the electroluminescence (EL) efficiencies of white polymer light‐emitting diodes (PLEDs) based on the single‐polymer systems has been investigated. The introduction of the highly efficient 4,7‐bis(4‐(N‐phenyl‐N‐(4‐methylphenyl)amino)phenyl)‐2,1,3‐benzothiadiazole unit to the main chain of polyfluorene provides significant improvement in EL efficiency. For a single‐layer device fabricated in air (indium tin oxide/poly(3,4‐ethylenedioxythiophene): poly(styrene sulfonic acid/polymer/Ca/Al), pure‐white electroluminescence with Commission Internationale de l'Eclairage (CIE) coordinates of (0.35,0.32), maximum brightness of 12 300 cd m–2, luminance efficiency of 7.30 cd A–1, and power efficiency of 3.34 lm W–1 can be obtained. This device is approximately two times more efficient than that utilizing a single polyfluorene containing 1,8‐naphthalimide moieties, and shows remarkable improvement over the corresponding blend systems in terms of efficiency and color stability. Thermal treatment of the single‐layer device before cathode deposition leads to the further improvement of the device performance, with CIE coordinates of (0.35,0.34), turn‐on voltage of 3.5 V, luminance efficiency of 8.99 cd A–1, power efficiency of 5.75 lm W–1, external quantum efficiency of 3.8 %, and maximum brightness of 12 680 cd m–2. This performance is roughly comparable to that of white organic light‐emitting diodes (WOLEDs) with multilayer device structures and complicated fabrication processes.  相似文献   

16.
Here, the facile synthesis of fluorescent ZrO2:Eu3+ nanoparticles with luminescence quantum yield of up to 8.7% that can be easily dispersed in organic solvents and utilized for the preparation of organic/inorganic volume holographic gratings is presented. The nanoparticles are prepared through a one‐step solvothermal process resulting in spherical particles with a mean size of 4 nm that were highly crystalline directly after the synthesis, without any need for calcination treatment. Detailed luminescence studies of the nanoparticles as a function of Eu3+ content demonstrate that the dopant concentration and its site symmetry play an important role in the emissive properties and lifetime of the luminescent centers. It is shown that the luminescence quantum yield of the colloidal ZrO2:Eu3+ nanoparticles increases with dopant concentration up to a critical concentration of 11 mol% while the luminescence lifetime is shortened from 1.8 to 1.4 ms. Holographic photopolymerization of suitable monomer mixtures containing the luminescent nanoparticles demonstrated the ability to inscribe volume Bragg gratings (refractive index contrast n1 up to 0.011) with light‐emissive properties, evidencing the high suitability of this approach for the fabrication of tailored nanomaterials for elaborate and demanding applications.  相似文献   

17.
The NIR light‐induced imaging‐guided cancer therapy is a promising route in the targeting cancer therapy field. However, up to now, the existing single‐modality light‐induced imaging effects are not enough to meet the higher diagnosis requirement. Thus, the multifunctional cancer therapy platform with multimode light‐induced imaging effects is highly desirable. In this work, captopril stabilized‐Au nanoclusters Au25(Capt)18?(Au25) are assembled into the mesoporous silica shell coating outside of Nd3+‐sensitized upconversion nanoparticles (UCNPs) for the first time. The newly formed Au25 shell exhibits considerable photothermal effects, bringing about the photothermal imaging and photoacoustic imaging properties, which couple with the upconversion luminescence imaging. More importantly, the three light‐induced imaging effects can be simultaneously achieved by exciting with a single NIR light (808 nm), which is also the triggering factor for the photothermal and photodynamic cancer therapy. Besides, the nanoparticles can also present the magnetic resonance and computer tomography imaging effects due to the Gd3+ and Yb3+ ions in the UCNPs. Furthermore, due to the photodynamic and the photothermal effects, the nanoparticles possess efficient in vivo tumor growth inhibition under the single irradiation of 808 nm light. The multifunctional cancer therapy platform with multimode imaging effects realizes a true sense of light‐induced imaging‐guided cancer therapy.  相似文献   

18.
The use of biomaterials and bioinspired concepts in electronics will enable the fabrication of transient and disposable technologies within areas ranging from smart packaging and advertisement to healthcare applications. In this work, the use of a nonhalogenated biodegradable solid polymer electrolyte based on poly(ε‐caprolactone‐co‐trimethylene carbonate) and tetrabutylammonium bis‐oxalato borate in light‐emitting electrochemical cells (LECs) is presented. It is shown that the spin‐cast devices exhibit current efficiencies of ≈2 cd A?1 with luminance over ≈12 000 cd m?2, an order of magnitude higher than previous bio‐based LECs. By a combination of industrially relevant techniques (i.e., inkjet printing and blade coating), the fabrication of LEC devices on a cellulose‐based flexible biodegradable substrate showing lifetimes compatible with transient applications is demonstrated. The presented results have direct implications toward the industrial manufacturing of biomaterial‐based light‐emitting devices with potential use in future biodegradable/biocompatible electronics.  相似文献   

19.
Monodisperse silica‐coated manganese oxide nanoparticles (NPs) with a diameter of ~35 nm are synthesized and are aminated through silanization. The amine‐functionalized core–shell NPs enable the covalent conjugation of a fluorescent dye, Rhodamine B isothiocyanate (RBITC), and folate (FA) onto their surface. The formed Mn3O4@SiO2(RBITC)–FA core–shell nanocomposites are water‐dispersible, stable, and biocompatible when the Mn concentration is below 50 µg mL?1 as confirmed by a cytotoxicity assay. Relaxivity measurements show that the core–shell NPs have a T1 relaxivity (r1) of 0.50 mM ?1 s?1 on the 0.5 T scanner and 0.47 mM ?1 s?1 on the 3.0 T scanner, suggesting the possibility of using the particles as a T1 contrast agent. Combined flow cytometry, confocal microscopy, and magnetic resonance imaging studies show that the Mn3O4@SiO2(RBITC)–FA nanocomposites can specifically target cancer cells overexpressing FA receptors (FARs). Findings from this study suggest that the silica‐coated Mn3O4 core–shell NPs could be used as a platform for bimodal imaging (both magnetic resonance and fluorescence) in various biological systems.  相似文献   

20.
A novel blue‐emitting material, 2‐tert‐butyl‐9,10‐bis[4‐(1,2,2‐triphenylvinyl)phenyl]anthracene ( TPVAn ), which contains an anthracene core and two tetraphenylethylene end‐capped groups, has been synthesized and characterized. Owing to the presence of its sterically congested terminal groups, TPVAn possesses a high glass transition temperature (155 °C) and is morphologically stable. Organic light‐emitting diodes (OLEDs) utilizing TPVAn as the emitter exhibit bright saturated‐blue emissions (Commission Internationale de L'Eclairage (CIE) chromaticity coordinates of x = 0.14 and y = 0.12) with efficiencies as high as 5.3 % (5.3 cd A–1)—the best performance of non‐doped deep blue‐emitting OLEDs reported to date. In addition, TPVAn doped with an orange fluorophore served as an authentic host for the construction of a white‐light‐emitting device that displayed promising electroluminescent characteristics: the maximum external quantum efficiency reached 4.9 % (13.1 cd A–1) with CIE coordinates located at (0.33, 0.39).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号