首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The design and fabrication of solar‐to‐chemical energy conversion devices are enabled through interweaving multiple components with various morphologies and unique functions using a versatile layer‐by‐layer assembly method. Cationic and anionic polyelectrolytes are used as an electrostatic adhesive to assemble the following functional materials: plasmonic Ag nanoparticles for improved light harvesting, upconversion nanoparticles for utilization of near‐infrared light, and polyoxometalate water oxidation catalysts for enhanced catalytic activity. Polyelectrolytes also have an additional function of passivating the surface recombination centers of the underlying photoelectrode. These functional components are precisely assembled on a model photoanode (e.g., Fe2O3 and BiVO4) in a desired order and various combinations without degradation of their intrinsic properties. As a result, the performance of water oxidation photoanodes is synergistically enhanced. This study can enable the design and fabrication of novel solar‐to‐chemical energy conversion devices.  相似文献   

2.
Homogeneous doping can boost solar‐to‐hydrogen conversion and therefore attracts great attention. Although a great deal of effort has been made to explore the doping–photoreactivity relationship, the doping mechanisms, especially from the perspective of crystal facets, are seldom explored. In this study, a general homogeneous carbon doping strategy is established and then serves as the doping model for a mechanistic investigation, as encouraged by its versatility in enabling homogeneous incorporation of carbon and improving solar‐to‐hydrogen conversion for typical oxides including TiO2, ZnO, and BiOCl. Using well‐defined BiOCl nanosheets of high {001} or {010} facet exposure, we clarify the homogeneous carbon doping mechanism at the level of crystal facets for the first time. This mechanism involves the initial facet‐dependent adsorption of the dopant precursor, regulated by the surface atomic structures, and the subsequent facet‐dependent diffusion of carbon dopants associated with the facet‐related arrangements of bulk atoms. This results in facet‐dependent carbon doping behavior and a dopant‐concentration‐dependent solar‐to‐hydrogen conversion property of BiOCl nanosheets. These mechanistic insights also suggest that the implantation of the dopant precursor in the shallow lattice of host nanocrystal is vital for the effective homogeneous doping. This new doping model is different from the conventional counterpart based on the organic ligands or gas molecules adsorption onto the surface of host nanocrystals, where surface doping usually occurs.  相似文献   

3.
P‐type semiconductors based on ternary oxides have attracted wide interest owing to their earth‐crust abundance and favorable optoelectronic properties. Among the p‐type ternary oxides, delafossite‐phase CuFeO2 has received considerable attention because it has the potential to fully harness visible light (<800 nm) owing to its narrow bandgap (1.4–1.6 eV). Despite the favorable optoelectronic properties predicted by theoretical studies, CuFeO2 photocathodes have low quantum efficiency under visible light near the bandgap edge, which is a major bottleneck for efficient solar‐to‐hydrogen conversion. Herein, a novel method is presented for boosting visible‐light harvesting in the CuFeO2 photocathode by employing an inverse opal structure as a periodic macrostructure. The periodic macroporous structure allows exceptional near‐bandgap photon harvesting, particularly within the range of 600–700 nm, owing to the enhanced light absorption due to multiple scattering together with the short diffusion distance for minority carriers toward the electrolyte. After surface modification with a low‐cost double hydroxide electrocatalyst, our CuFeO2‐based photocathode exhibits a record‐breaking photocurrent density of 5.2 mA cm?2 at ?0.1 V with respect to the reversible hydrogen electrode for water reduction among p‐type ternary oxide‐based photocathodes.  相似文献   

4.
Extensive research efforts have been recently devoted to the development of self‐driven electrocatalytic water‐splitting systems to generate clean hydrogen chemical fuels. Currently, self‐driven electrocatalytic water‐splitting devices are powered by solar cells, which operate intermittently, or by aqueous batteries, which deliver stored electric power, leading to high operating costs and environmental pollution. Thus, a fully solar‐powered uninterrupted overall water‐splitting system is greatly desirable. Here, the solar cells, stable output voltage of 1.75 V Ni–Zn batteries, and high efficiency zinc–nickel–cobalt phosphide electrocatalysts are successfully assembled together to create a 24 h overall water‐splitting system. Specifically, the silicon‐based solar cells enable the charging of aqueous Ni–Zn batteries for energy storage as well as providing sufficient energy for electrocatalysis throughout the day; in addition, the high‐capacity Ni–Zn batteries offer a steady output voltage for overall water‐splitting at night. Such an uninterrupted solar‐to‐hydrogen system opens up exciting opportunities for the development and applications of renewable energy.  相似文献   

5.
The search for low‐cost thin‐film solar cells, to replace silicon multi‐crystalline cells in due course, calls for new combinations of materials and new cell configurations. Here we report on a new approach, based on semiconductor nanocomposites, towards what we refer to as the three‐dimensional (3D) solar‐cell concept. Atomic layer chemical vapor deposition is employed for infiltration of CuInS2 inside the pores of nanostructured TiO2. In this way it is possible to obtain a nanometer‐scale interpenetrating network between n‐type TiO2 and p‐type CuInS2. X‐ray diffraction, Raman spectroscopy, photoluminescence spectroscopy, scanning electron microscopy, transmission electron microscopy, and current–voltage measurements are used to characterize the nanostructured devices. The 3D solar cells obtained show photovoltaic activity with a maximum monochromatic incident photon‐to‐current conversion efficiency of 80 % and have an energy‐conversion efficiency of 4 %.  相似文献   

6.
7.
Alkaline water electrolysis (AWE) holds great promise for a truly sustainable energy future if it can be driven by renewable energy sources such as solar and wind. The main challenge arises from the serious partial loading issue when intermittent and unstable renewable energy is coupled to water electrolyzers. An energy storage device can mitigate this incompatibility between water electrolyzer and renewable energy sources. Herein, an AWE device driven by solar photovoltaic (PV) through a full cell of lithium‐ion battery (LIB) as an energy reservoir is demonstrated (PV?LIB?AWE). Stable power output from LIB drives the water electrolyzer for steady hydrogen production, and thus overcomes the partial loading issue of AWE. Moreover, a multifunctional hierarchical material, porous nickel oxide decorated nitrogen‐doped carbon (NC) support, with excellent electrochemical performances for LIBs, oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) for the PV?LIB?AWE system is developed. Density functional theory calculations show that the strong interaction between metal oxide and NC tailors the electronic structure and then optimizes activation energy of OER process. PV?LIB?AWE integrated system demonstrated here offers an alternative approach to drive water electrolysis with intermittent renewable energy for a truly sustainable energy future.  相似文献   

8.
This paper describes the design and implementation of a solar‐powered wireless motion sensor surveillance network. Commercially available systems with similar functionality which exist today have several disadvantages including single points of failure and requires (semi) constant personnel attention as well as an elaborate power system. These systems require a lot of time to set up, they cannot be used in remote areas where a main power supply is unavailable, and are quite costly. Therefore, there is a need to develop a system which is portable, easy to set up, and is energy efficient. The wireless motion surveillance network described in this paper is designed to be portable, economically inexpensive, and energy efficient. The network is created using the IEEE 802.15.4 ZigBee wireless standard by implementing multiple Microchip PICDEM Z nodes. Each node in the network is equipped with a Direction Sensing Infrared Motion Detector (DSIMD) and a solar power unit (SPU). The DSIMD allows for detection of humans and animals alike moving into or out of the network. The system is powered by solar energy that makes it quite adaptable for remote applications. The network is able to cover an area of radius 30 m. By developing a low‐cost system, which is portable, easy to set up, and has an unlimited power supply, this technology is made accessible to a wider range of applications. The implementation of a CMOS camera is discussed at the end which can be used to take a snapshot of the detected object. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Due to its significant applications in many relevant fields, light detection in the solar‐blind deep‐ultraviolet (DUV) wavelength region is a subject of great interest for both scientific and industrial communities. The rapid advances in preparing high‐quality ultrawide‐bandgap (UWBG) semiconductors have enabled the realization of various high‐performance DUV photodetectors (DUVPDs) with different geometries, which provide an avenue for circumventing numerous disadvantages in traditional DUV detectors. This article presents a comprehensive review of the applications of inorganic UWBG semiconductors for solar‐blind DUV light detection in the past several decades. Different kinds of DUVPDs, which are based on varied UWBG semiconductors including Ga2O3, MgxZn1?xO, III‐nitride compounds (AlxGa1?xN/AlN and BN), diamond, etc., and operate on different working principles, are introduced and discussed systematically. Some emerging techniques to optimize device performance are addressed as well. Finally, the existing techniques are summarized and future challenges are proposed in order to shed light on development in this critical research field.  相似文献   

10.
An increasing number of applications using ultraviolet radiation have renewed interest in ultraviolet photodetector research. Particularly, solar‐blind photodetectors sensitive to only deep UV (<280 nm), have attracted growing attention because of their wide applicability. Among recent advances in UV detection, nanowire (NW)‐based photodetectors seem promising, however, none of the reported devices possesses the required attributes for practical solar‐blind photodetection, namely, an efficient fabrication process, a high solar light rejection ratio, a low photocurrent noise, and a fast response. Herein, the assembly of β‐Ga2O3 NWs into high‐performance solar‐blind photodetectors by use of an efficient bridging method is reported. The device is made in a single‐step chemical vapor deposition process and has a high 250‐to‐280‐nm rejection ratio (~2 × 103), low photocurrent fluctuation (<3%), and a fast decay time (<<20 ms). Further, variations in the synthesis parameters of the NWs induce drastic changes in the photoresponse properties, which suggest a possibility for tuning the performance of the photodetectors. The efficient fabrication method and high performance of the bridged β‐Ga2O3 NW photodetectors make them highly suitable for solar‐blind photodetection.  相似文献   

11.
Solution‐processed organic photovoltaics (OPVs) have continued to show their potential as a low‐cost power generation technology; however, there has been a significant gap between device efficiencies fabricated with lab‐scale techniques—i.e., spin coating—and scalable deposition methods. Herein, temperature‐controlled slot die deposition is developed for the photoactive layer of OPVs. The influence of solution and substrate temperatures on photoactive films and their effects on power conversion efficiency (PCE) in slot die coated OPVs using a 3D printer‐based slot die coater are studied on the basis of device performance, molecular structure, film morphology, and carrier transport behavior. These studies clearly demonstrate that both substrate and solution temperatures during slot die coating can influence device performance, and the combination of hot substrate (120 °C) and hot solution (90 °C) conditions result in mechanically robust films with PCE values up to 10.0% using this scalable deposition method in air. The efficiency is close to that of state‐of‐the‐art devices fabricated by spin coating. The deposition condition is translated to roll‐to‐roll processing without further modification and results in flexible OPVs with PCE values above 7%. The results underscore the promising potential of temperature‐controlled slot die coating for roll‐to‐roll manufacturing of high performance OPVs.  相似文献   

12.
13.
This paper proposes iPTT, a peer‐to‐peer (P2P) Push‐to‐Talk (PTT) service for Voice over IP (VoIP). In iPTT, a distributed and mobile‐operator independent network architecture is presented to accelerate the deployment of the PTT service. Based on the serverless architecture, we develop two mechanisms, that is, flooding‐based floor control mechanism (FFC) and tree‐based floor control mechanism (TFC), for real‐time talk‐burst determination. The determination algorithms and the corresponding message flows for these two mechanisms are designed to show the feasibility of FFC and TFC. The performance of FFC and TFC is investigated through our analytical and simulation models in terms of the determination latency and the number of floor‐control message exchanges. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Highly crystallized ZnO–Ga2O3 core–shell heterostructure microwire is synthesized by a simple one‐step chemical vapor deposition method, and constructed into a self‐powered solar‐blind (200–280 nm) photodetector with a sharp cutoff wavelength at 266 nm. The device shows an ultrahigh responsivity (9.7 mA W?1) at 251 nm with a high UV/visible rejection ratio (R 251 nm/R 400 nm) of 6.9 × 102 under zero bias. The self‐powered device has a fast response speed with rise time shorter than 100 µs and decay time of 900 µs, respectively. The ultrahigh responsivity, high UV/visible rejection ratio, and fast response speed make it highly suitable in practical self‐powered solar‐blind detection. Additinoally, this microstructure heterojunction design method would provide a new approach to realize the high‐performance self‐powered photodetectors.  相似文献   

16.
Heterostructure n‐GaAs/InGaP/p‐GaAs core‐multishell nanowire diodes are synthesized by metal‐organic vapor‐phase epitaxy. This structure allows a reproducible, selective wet etching of the individual shells and therefore a simplified contacting of single nanowire p‐i‐n junctions. Nanowire diodes show leakage currents in a low pA range and at a high rectification ratio of 3500 (at ±1V). Pronounced electroluminescence at 1.4 eV is measured at room temperature and gives evidence of the device quality. Photocurrent generation is demonstrated at the complete area of the nanowire p‐i‐n junction by scanning photocurrent microscopy. A solar‐conversion efficiency of 4.7%, an open‐circuit voltage of 0.5 V and a fill factor of 52% are obtained under AM 1.5G conditions. These results will guide the development of nanowire‐based photonic and photovoltaic devices.  相似文献   

17.
A new type of ruthenium complexes 6 – 8 with tridentate bipyridine–pyrazolate ancillary ligands has been synthesized in an attempt to elongate the π‐conjugated system as well as to increase the optical extinction coefficient, possible dye uptake on TiO2, and photostability. Structural characterization, photophysical studies, and corresponding theoretical approaches have been made to ensure their fundamental basis. As for dye‐sensitized solar cell applications, it was found that 6 – 8 possess a larger dye uptake of 2.4 × 10–7 mol cm–2, 1.5 × 10–7 mol cm–2, and 1.3 × 10–7 mol cm–2, respectively, on TiO2 than that of the commercial N3 dye (1.1 × 10–7 mol cm–2). Compound 8 works as a highly efficient photosensitizer for the dye‐sensitized nanocrystalline TiO2 solar cell, producing a 5.65 % solar‐light‐to‐electricity conversion efficiency (compare with 6.01 % for N3 in this study), a short‐circuit current density of 15.6 mA cm–2, an open‐circuit photovoltage of 0.64 V, and a fill factor of 0.57 under standard AM 1.5 irradiation (100 mW cm–2). These, in combination with its superior thermal and light‐soaking stability, lead to the conclusion that the concomitant tridentate binding properties offered by the bipyridine‐pyrazolate ligand render a more stable complexation, such that extended life spans of DSSCs may be expected.  相似文献   

18.
Efficient cleanup of viscous crude oil spill is a worldwide challenge due to its sluggish flowability at room temperature. Conventional oil remediation methods using physical absorbers, skimmers, and vacuum technologies either demonstrate low absorption efficiency or have severe operational restrictions. Inspired by the highly efficient and passive transpiration process in trees, a solar‐heated carbon absorber (HC‐Wood) with an inherited wood structure of aligned channels for rapid crude oil absorption is reported. The unique porous structure of the carbon absorber can extend the light absorption paths, guide the direction of heat transport, and decrease the resistance to oil flows, endowing the carbon absorber a large efficiency of solar absorption (>99% of the incident irradiation), excellent thermal management, and fast capillarity‐driven oil absorption behavior. The low tortuosity of the porous structure together with the efficient solar‐thermal conversion enable the absorber to demonstrate a crude oil absorption rate of 1550 mL m?2 in 30 s under 1 sun irradiation, which is 10 times faster than previously reported results for passive absorption of viscous crude oil. Given the unique structural design, low operating cost, and rapid oil absorption speed, this work provides a promising solution for addressing catastrophic large‐area viscous oil spills.  相似文献   

19.
A roll‐to‐roll (R2R) transfer technique is employed to improve the electrical properties of transferred graphene on flexible substrates using parylene as an interfacial layer. A layer of parylene is deposited on graphene/copper (Cu) foils grown by chemical vapor deposition and are laminated onto ethylene vinyl acetate (EVA)/poly(ethylene terephthalate). Then, the samples are delaminated from the Cu using an electrochemical transfer process, resulting in flexible and conductive substrates with sheet resistances of below 300 Ω sq?1, which is significantly better (fourfold) than the sample transferred by R2R without parylene (1200 Ω sq?1). The characterization results indicate that parylene C and D dope graphene due to the presence of chlorine atoms in their structure, resulting in higher carrier density and thus lower sheet resistance. Density functional theory calculations reveal that the binding energy between parylene and graphene is stronger than that of EVA and graphene, which may lead to less tear in graphene during the R2R transfer. Finally, organic solar cells are fabricated on the ultrathin and flexible parylene/graphene substrates and an ultra‐lightweight device is achieved with a power conversion efficiency of 5.86%. Additionally, the device shows a high power per weight of 6.46 W g?1 with superior air stability.  相似文献   

20.
Silver nanowires (AgNWs) and zinc oxide (ZnO) are deposited on flexible substrates using fast roll‐to‐roll (R2R) processing. The AgNW film on polyethylene terephthalate (PET) shows >80% uniform optical transmission in the range of 550–900 nm. This electrode is compared to the previously reported and currently widely produced indium‐tin‐oxide (ITO) replacement comprising polyethylene terephthalate (PET)|silver grid|poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)|ZnO known as Flextrode. The AgNW/ZnO electrode shows higher transmission than Flextrode above 490 nm in the electromagnetic spectrum reaching up to 40% increased transmission at 750 nm in comparison to Flextrode. The functionality of AgNW electrodes is demonstrated in single and tandem polymer solar cells and compared with parallel devices on traditional Flextrode. All layers, apart from the semitransparent electrodes which are large‐scale R2R produced, are fabricated in ambient conditions on a laboratory roll‐coater using printing and coating methods which are directly transferrable to large‐scale R2R processing upon availability of materials. In a single cell structure, Flextrode is preferable with active layers based on poly‐3‐hexylthiophene(P3HT):phenyl‐C61‐butyric acid methylester (PCBM) and donor polymers of similar absorption characteristics while AgNW/ZnO electrodes are more compatible with low band gap polymer‐based single cells. In tandem devices, AgNW/ZnO is more preferable resulting in up to 80% improvement in PCE compared to parallel devices on Flextrode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号