首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
Convenient patterning and precisely programmable shape deformations are crucial for the practical applications of shape deformable hydrogels. Here, a facile and versatile computer‐assisted ion inkjet printing technique is described that enables the direct printing of batched, very complicated patterns, especially those with well‐defined, programmable variation in cross‐linking densities, on one or both surfaces of a large‐sized hydrogel sample. A mechanically strong hydrogel containing poly(sodium acrylate) is first prepared, and then digital patterns are printed onto the hydrogel surfaces by using a commercial inkjet printer and an aqueous ferric solution. The complexation between the polyelectrolyte and ferric ions increases the cross‐linking density of the printed regions, and hence the gel sample can undergo shape deformation upon swelling/deswelling. The deformation rates and degrees of the hydrogels can be conveniently adjusted by changing the printing times or the different/gradient grayscale distribution of designed patterns. By printing appropriate patterns on one or both surfaces of the hydrogel sheets, many complex 3D shapes are obtained from shape deformations upon swelling/deswelling, such as cylindrical shell and forsythia flower (patterns on one surface), ding (patterns on both surfaces), blooming flower (different/gradient grayscale distributive patterns on one surface), and non‐Euclidean plates (different/gradient grayscale distributive patterns on both surfaces).  相似文献   

2.
喷墨印制PCB用新型纳米银导电油墨的研发现状及趋势   总被引:5,自引:1,他引:4  
喷墨打印加成法制造电路板,可明显改善传统减成法效率低、成本高、污染重等缺点,因而受到业内广泛关注。该方法所使用的新型功能材料纳米银导电油墨,因具有烧结温度低、导电性能好等优点,近年来成为全球电子油墨行业的研发热点之一。文章详细介绍了纳米银油墨在印制电子产品电路制作领域的应用,并对喷印纳米金属油墨的技术要求、纳米银油墨的特点及主要不足进行了评述,重点展示了全球纳米银油墨的产品开发动态,同时对新型喷印纳米金属油墨的制备与研发提出了一些建议。  相似文献   

3.
Graphene‐based textiles show promise for next‐generation wearable electronic applications due to their advantages over metal‐based technologies. However, current reduced graphene oxide (rGO)‐based electronic textiles (e‐textiles) suffer from poor electrical conductivity and higher power consumption. Here, highly conductive, ultraflexible, and machine washable graphene‐based wearable e‐textiles are reported. A simple and scalable pad?dry?cure method with subsequent roller compression and a fine encapsulation of graphene flakes is used. The graphene‐based wearable e‐textiles thus produced provide lowest sheet resistance (≈11.9 Ω sq?1) ever reported on graphene e‐textiles, and highly conductive even after 10 home laundry washing cycles. Moreover, it exhibits extremely high flexibility, bendability, and compressibility as it shows repeatable response in both forward and backward directions before and after home laundry washing cycles. The scalability and multifunctional applications of such highly conductive graphene‐based wearable e‐textiles are demonstrated as ultraflexible supercapacitor and skin‐mounted strain sensors.  相似文献   

4.
Recently, artificial intelligence research has driven the development of stretchable and flexible electronic systems. Conductive hydrogels are a class of soft electronic materials that have emerging applications in wearable and implantable biomedical devices. However, current conductive hydrogels possess fundamental limitations in terms of their antibacterial performance and a mechanical mismatch with human tissues, which severely limits their applications in biological interfaces. Here, inspired by animal skin, a conductive hydrogel is fabricated from a supramolecular assembly of polydopamine decorated silver nanoparticles (PDA@Ag NPs), polyaniline, and polyvinyl alcohol, namely PDA@Ag NPs/CPHs. The resultant hydrogel has many desirable features, such as tunable mechanical and electrochemical properties, eye‐catching processability, good self‐healing ability as well as repeatable adhesiveness. Remarkably, PDA@Ag NPs/CPHs exhibit broad antibacterial activity against Gram‐negative and Gram‐positive bacteria. The potential application of this versatile hydrogel is demonstrated by monitoring large‐scale movements of the human body in real time. In addition, PDA@Ag NPs/CPHs have a significant therapeutic effect on diabetic foot wounds by promoting angiogenesis, accelerating collagen deposition, inhibiting bacterial growth, and controlling wound infection. To the best of the authors' knowledge, this is the first time that conductive hydrogels with antibacterial ability are developed for use as epidermal sensors and diabetic foot wound dressing.  相似文献   

5.
The interfacing of soft and hard electronics is a key challenge for flexible hybrid electronics. Currently, a multisubstrate approach is employed, where soft and hard devices are fabricated or assembled on separate substrates, and bonded or interfaced using connectors; this hinders the flexibility of the device and is prone to interconnect issues. Here, a single substrate interfacing approach is reported, where soft devices, i.e., sensors, are directly printed on Kapton polyimide substrates that are widely used for fabricating flexible printed circuit boards (FPCBs). Utilizing a process flow compatible with the FPCB assembly process, a wearable sensor patch is fabricated composed of inkjet‐printed gold electrocardiography (ECG) electrodes and a stencil‐printed nickel oxide thermistor. The ECG electrodes provide 1 mVpp ECG signal at 4.7 cm electrode spacing and the thermistor is highly sensitive at normal body temperatures, and demonstrates temperature coefficient, α ≈ –5.84% K–1 and material constant, β ≈ 4330 K. This sensor platform can be extended to a more sophisticated multisensor platform where sensors fabricated using solution processable functional inks can be interfaced to hard electronics for health and performance monitoring, as well as internet of things applications.  相似文献   

6.
The prevalence of the Internet of Things (IoT) and wearable electronics create an unprecedented demand for new power sources which are low cost, high performance, and flexible in many application settings. In this paper, a strategy for the scalable fabrication of high‐performance, all‐solid‐state supercapacitors (SCs) is demonstrated using conventional paper and an inkjet printer. Emerging printed electronics technology and low‐cost chemical engraving methods are bridged for the first time to construct CuxO nanosheets, in situ, on the 3D metallized fiber structures. Benefitting from both the “2D Materials on 3D Structures” design and the binder‐free nature of the fabricated electrodes, substantial improvements to electrical conductivity, aerial capacitance, and electrochemical performance of the resulting SCs are observed. With the proposed strategy, the fabricated SCs can be seamlessly integrated into any printed circuit, sensors, or artwork; the properties of these SCs can be easily tuned by simple pattern design, fulfilling the increasing demand of highly customized power systems in the IoT and flexible/wearable electronics industries.  相似文献   

7.
With the aim of preparing a high performance conductive ink, we sought to control the surface chemistry of Cu nanoparticles so as to minimize surface oxidation. Specifically, the surface oxide layer on Cu nanoparticles synthesized in ambient atmosphere was minimized by adjusting the molecular weight of poly(N‐vinylpyrrolidone) capping molecules, as confirmed by high resolution transmission electron microscopy and X‐ray photoelectron spectroscopy analyses. In addition, we demonstrate that by minimizing the thickness of the surface oxide layer, Cu granular films with good conductivity could be obtained by sintering nanoparticle assembles. Finally, we fabricated highly conductive Cu patterns on a plastic substrate by ink‐jet printing.  相似文献   

8.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   

9.
10.
11.
Fast, simple, cost‐efficient, eco‐friendly, and design‐flexible patterning of high‐quality graphene from abundant natural resources is of immense interest for the mass production of next‐generation graphene‐based green electronics. Most electronic components have been manufactured by repetitive photolithography processes involving a large number of masks, photoresists, and toxic etchants; resulting in slow, complex, expensive, less‐flexible, and often corrosive electronics manufacturing processes to date. Here, a one‐step formation and patterning of highly conductive graphene on natural woods and leaves by programmable irradiation of ultrafast high‐photon‐energy laser pulses in ambient air is presented. Direct photoconversion of woods and leaves into graphene is realized at a low temperature by intense ultrafast light pulses with controlled fluences. Green graphene electronic components of electrical interconnects, flexible temperature sensors, and energy‐storing pseudocapacitors are fabricated from woods and leaves. This direct graphene synthesis is a breakthrough toward biocompatible, biodegradable, and eco‐friendlily manufactured green electronics for the sustainable earth.  相似文献   

12.
13.
14.
Cardiovascular disease is the leading cause of death and has dramatically increased in recent years. Continuous cardiac monitoring is particularly important for early diagnosis and prevention, and flexible and stretchable electronic devices have emerged as effective tools for this purpose. Their thin, soft, and deformable features allow intimate and long‐term integration with biotissues, which enables continuous, high‐fidelity, and sometimes large‐area cardiac monitoring on the skin and/or heart surface. In addition to monitoring, intimate contact is also crucial for high‐precision therapies. Combined with tissue engineering, soft bioelectronics have also demonstrated the capability to repair damaged cardiac tissues. This review highlights the recent advances in wearable and implantable devices based on flexible and stretchable electronics for cardiovascular monitoring and therapy. First, wearable/implantable soft bioelectronics for cardiovascular monitoring (e.g., the electrocardiogram, blood pressure, and oxygen saturation level) are reviewed. Then, advances in cardiovascular therapy based on soft bioelectronics (e.g., mesh pacing, ablation, robotic sleeves, and electronic stents) are discussed. Finally, device‐assisted tissue engineering therapy (e.g., functional electronic scaffolds and in vitro cardiac platforms) is discussed.  相似文献   

15.
16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号