首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Combining metal nanoparticles (NPs) featured with localized surface plasmon resonance (LSPR) with metal–organic framework (MOF)-based photocatalysts is a novel means for achieving efficient separation of electron–hole pairs. Herein, the Au@NH2-UiO-66/CdS composites are successfully synthesized by encapsulating Au NPs with LSPR into the NH2-UiO-66 nanocage, further growing CdS NPs on the surface of the NH2-UiO-66, which exhibits higher photocatalytic activity in hydrogen evolution reaction under visible-light irradiation than that of NH2-UiO-66/CdS and CdS, respectively. Transient absorption measurements reveal that MOF is not only a transit station for electrons generated from CdS to Au, but also a receiver for hot electrons generated from plasmonic Au in Au@MOF/CdS composites. Thus, the LSPR-induced hot electron transfer from Au NPs is an important manifestation to prolong the carrier lifetime and enhance the photocatalytic performance. This work provides insights into investigating the photoinduced carrier dynamics of nanomaterials with LSPR effects for enhancing the MOF-based photocatalytic performance.  相似文献   

2.
Highly efficient, visible‐light‐induced H2 generation can be achieved without the help of a Pt cocatalyst by new hybrid photocatalysts, in which CdS quantum dots (QDs) (particle size ≈2.5 nm) are incorporated in the porous assembly of sub‐nanometer‐thick layered titanate nanosheets. Due to the very‐limited crystal dimension of component semiconductors, the electronic structure of CdS QDs is strongly coupled with that of the layered titanate nanosheets, leading to an efficient electron transfer between them and the enhancement of the CdS photostability. As a consequence of the promoted electron transfer, the photoluminescence of CdS QDs is nearly quenched after hybridization, indicating the almost‐suppression of electron‐hole recombination. These Pt‐cocatalyst‐free, CdS‐layered titanate nanohybrids show much‐higher photocatalytic activity for H2 production than the precursor CdS QDs and layered titanate, which is due to the increased lifetime of the electrons and holes, the decrease of the bandgap energy, and the expansion of the surface area upon hybridization. The observed photocatalytic efficiency of these Pt‐free hybrids (≈1.0 mmol g?1 h?1) is much greater than reported values of other Pt‐free CdS‐TiO2 systems. This finding highlights the validity of 2D semiconductor nanosheets as effective building blocks for exploring efficient visible‐light‐active photocatalysts for H2 production.  相似文献   

3.
Au-ZnO nanoripples (NRs) were synthesized by using a sol-gel method for utilization as an electron transport layer (ETL) in inverted organic photovoltaic (OPV) cells. Absorption spectra showed that the plasmonic broadband light absorption of the ZnO NRs was increased due to the embedded Au nanoparticles (NPs). In particular, as compared to regular inverted OPV cells with a ZnO NR ETL, the incident photon-to-current efficiency of the inverted OPV cells with a Au-ZnO NR ETL was significantly enhanced due to the localized surface plasmon resonance (LSPR) effect of the Au NRs. The enhancement of the short-circuit current density (10.05 mA/cm2) of the inverted OPV cells with a Au-ZnO NR ETL was achieved by the insertion of the Au NPs into the ZnO NRs. The power conversion efficiency (PCE) of the OPV cells with Au-ZnO NRs was 3.25%. The PCE of the inverted OPV cells fabricated with a Au-ZnO NR ETL was significantly improved by 20.37% in comparison with that of inverted OPV cells fabricated with a ZnO NR ETL. This improvement can mainly be attributed to an increase in light absorption in the active layer due to the generation of the LSPR effect resulting from the existence of the Au NPs embedded in the ZnO NRs.  相似文献   

4.
High‐performance photocatalysts should have highly crystallized nanocrystals (NCs) with small sizes, high separation efficiency of photogenerated electron–hole pairs, fast transport and consumption of photon‐excited electrons from the surface of catalyst, high adsorption of organic pollutant, and suitable band gap for maximally utilizing sunlight energy. However, the design and synthesis of these versatile structures still remain a big challenge. Here, we report a novel strategy for the synthesis of ultrasmall and highly crystallized graphene–ZnFe2O4 photocatalyst through interface engineering by using interconnected graphene network as barrier for spatially confined growth of ZnFe2O4, as transport channels for photon‐excited electron from the surface of catalyst, as well as the electron reservoir for suppressing the recombination of photogenerated electron–hole pairs. As a result, about 20 nm ZnFe2O4 NCs with highly crystallized (311) plane confined in the graphene network exhibit an excellent visible‐light‐driven photocatalytic activity with an ultrafast degradation rate of 1.924 × 10?7 mol g?1 s?1 for methylene blue, much higher than those of previously reported photocatalysts such as spinel‐based photocatalysts (20 times), TiO2‐based photocatalysts (4 times), and other photocatalysts (4 times). Our strategy can be further extended to fabricate other catalysts and electrode materials for supercapacitors and Li‐ion batteries.  相似文献   

5.
The design of new functional materials with excellent hydrogen production activity under visible‐light irradiation has critical significance for solving the energy crisis. A well‐controlled synthesis strategy is developed to prepare an Au–Pt–CdS hetero‐nanostructure, in which each component of Au, Pt, and CdS has direct contact with the other two materials; Pt is on the tips and a CdS layer along the sides of an Au nanotriangle (NT), which exhibits excellent photocatalytic activity for hydrogen production under light irradiation (λ > 420 nm). The sequential growth and surfactant‐dependent deposition produce the three‐component Au–Pt–CdS hybrids with the Au NT acting as core while Pt and CdS serve as a co‐shell. Due to the presence of the Au NT cores, the Au–Pt–CdS nanostructures possess highly enhanced light‐harvesting and strong local‐electric‐field enhancement. Moreover, the intimate and multi‐interface contact generates multiple electron‐transfer pathways (Au to CdS, CdS to Pt and Au to Pt) which guide photoexcited electrons to the co‐catalyst Pt for an efficient hydrogen reduction reaction. By evaluating the hydrogen production rate when aqueous Na2SO3–Na2S solution is used as sacrificial agent, the Au–Pt–CdS hybrid exhibits excellent photocatalytic activity that is about 2.5 and 1.4 times larger than those of CdS/Pt and Au@CdS/Pt, respectively.  相似文献   

6.
Herein, transition metal chalcogenides of pristine cobalt sulfides are rationally designed to act as robust bifunctional photocatalysts for visible‐light‐driven water splitting for the first time. Through moderate solvothermal route, cobalt sulfides are synthesized in situ growth and observed by scanning electron microscope image analysis. Noteworthily, 3D hierarchical cobalt sulfides acting as bifunctional photocatalysts are implemented to catalyze the visible‐light‐driven oxygen evolution reaction and hydrogen evolution reaction. This efficient, earth‐abundant, and nonnoble water splitting catalyst for artificial photosynthesis is thoroughly analyzed by various spectroscopic techniques with the aim of investigating its photocatalytic mechanism under visible‐light illumination. The main catalyst of CoS‐2 exhibits considerable H2 evolution rate of 1196 µmol h?1 g?1 and O2 yield of 63.5%. The efficient activity is attributed to the effective electron transfer between the photosensitizer and catalyst, which is verified by transient absorption experiments. The effective electron transfer between the photosensitizer and catalyst during water oxidation is verified by the dramatic decline of [Ru(bpy)3]3+ concentration in the presence of the catalyst CoS‐2. At the same time, transient absorption experiments support a rapid electron transfers from 3EY* (excited photosensitizer eosin‐Y) to the catalyst CoS‐2 for efficient hydrogen evolution.  相似文献   

7.
To the photocatalytic H2 evolution, the exposure of a reduction surface over a catalyst plays an important role for the reduction of hydrogen protons. Here, this study demonstrates the design of a noble‐metal‐free spatially separated photocatalytic system exposed with reduction surfaces (MnOx @CdS/CoP) for highly solar‐light‐driven H2 evolution activity. CoP and MnOx nanoparticles are employed as the electron and hole collectors, which are selectively anchored on the outer and inner surface of CdS shells, respectively. Under solar light irradiation, the photogenerated holes and electrons can directionally move to the MnOx and CoP, respectively, leading to the exposure of a reduction surface. As a result, the H2 evolution increases from 32.0 to 238.4 µmol h?1, which is even higher than the activity of platinum‐loaded photocatalyst (MnOx @CdS/Pt). Compared to the pure CdS with serious photocorrosion, the MnOx @CdS/CoP maintains a changeless activity for the H2 evolution and rhodamine B degradation, even after four cycles. The research provides a new strategy for the preparation of spatially separated photocatalysts with a selective reduction surface.  相似文献   

8.
Photocatalytic hydrogen (H2) evolution requires efficient electron transfer to catalytically active sites in competition with charge recombination. Thus, controlling charge‐carrier dynamics in the photocatalytic H2 evolution process is essential for optimized photocatalyst nanostructures. Here, the efficient delocalization of electrons is demonstrated in a heterostructure consisting of optimized MoS2 tips and CdS nanorods (M‐t‐CdS Nrs) synthesized by amine‐assisted oriented attachment. The heterostructure achieves photocatalytic H2 activity of 8.44 mmol h?1 g?1 with excellent long‐term durability (>23 h) without additional passivation under simulated solar light (AM 1.5, 100 mW cm?2). This activity is nearly two orders of magnitude higher than that of pure CdS Nrs. The impressive photocatalytic H2 activity of M‐t‐CdS Nrs reflects favorable charge‐carrier dynamics, as determined by steady‐state PL and time‐correlated single photon counting correlation analysis at low temperature. The MoS2 cocatalysts precisely located at the end of the CdS Nrs exhibit ultrafast charge transfer and slow charge recombination via spatially localized deeper energy states, resulting in a highly efficient H2 evolution reaction in lactic acid containing an electrolyte.  相似文献   

9.
Polymer photocatalysts have great promise for solar fuel production due to their flexible structural and functional designability. However, their photocatalytic efficiencies are still unsatisfactory, limited by their intrinsically large exciton binding energy and fast charge recombination. Herein, the atomistic structural engineering of donor–acceptor (D−A) polymer photocatalysts for enhanced charge separation and photocatalytic hydrogen production is proposed. By changing the electron affinity of the acceptor units, the electron delocalization and exciton binding energy of the polymeric networks can be readily tuned, resulting in enhanced charge separation efficiency and photocatalytic activity. The optimal sample shows the highest H2 production rate of 3207 µmol g−1 h−1 in the presence of ascorbic acid as the sacrificial agent. Moreover, the photocatalytic H2 production can be coupled with almost stoichiometrical conversion of 5-hydroxymethyl furfural to 2,5-diformylfuran.  相似文献   

10.
Semiconductor photocatalysis technology has aroused great interest in photocatalytic degradation, but it suffers from the drawbacks of fast electron‐hole recombination and unsatisfactory degradation efficiency. Herein, a novel photocatalyst Ag3PO4@NC with excellent photocatalytic activity is successfully prepared, characterized, and evaluated for the efficient removal of organic pollutants. After visible light irradiation for 5, 8, and 12 min, the photocatalytic degradation efficiency of norfloxacin, diclofenac, and phenol on the composite catalyst reaches 100%, and the apparent rate constant of which is 19.2, 48.7, and 23.2 times than that of the pure Ag3PO4, respectively. The density functional theory calculation results indicate that there is a built‐in electric field from N‐doped carbon (NC) to Ag3PO4 at the interface of the composite catalyst. Driven by the electric field, the photogenerated electrons of Ag3PO4 can be readily transferred to the NC, leading to the efficient separation of photogenerated carriers and the significant improvement of the catalytic performance. The results of radical trapping experiments and electron spin resonance analysis show that photogenerated holes and O2? play an important role in the photodegradation process. This work provides a universal strategy of construction built‐in electric field through coupling with NC to improve the photocatalytic performance of photocatalysts.  相似文献   

11.
Separation and transfer of photogenerated charge carriers are key elements in designing photocatalysts. TiO2 in numerous geometries has been for many years the most studied photocatalyst. To overcome kinetic limitations and achieve swift charge transfer, TiO2 has been widely investigated with cocatalysts that are commonly randomly placed nanoparticles on a TiO2 surface. The poor control over cocatalyst placement in powder technology approaches can drastically hamper the photocatalytic efficiencies. Here in contrast it is shown that the site‐selective placement of suitable charge‐separation and charge‐transfer cocatalysts on a defined TiO2 nanotube morphology can provide an enhancement of the photocatalytic reactivity. A TiO2–WO3–Au electron‐transfer cascade photocatalyst is designed with nanoscale precision for H2 production on TiO2 nanotube arrays. Key aspects in the construction are the placement of the WO3/Au element at the nanotube top by site‐selective deposition and self‐ordered thermal dewetting of Au. In the ideal configuration, WO3 acts as a buffer layer for TiO2 conduction band electrons, allowing for their efficient transfer to the Au nanoparticles and then to a suitable environment for H2 generation, while TiO2 holes due to intrinsic upward band bending in the nanotube walls and short diffusion length undergo a facilitated transfer to the electrolyte where oxidation of hole‐scavenger molecules takes place. These photocatalytic structures can achieve H2 generation rates significantly higher than any individual cocatalyst–TiO2 combination, including a classic noble metal–TiO2 configuration.  相似文献   

12.
Catalysts for the photogeneration of hydrogen from water are key for realizing solar energy conversion. Despite tremendous efforts, developing hydrogen evolution catalysts with high activity and long‐term stability remains a daunting challenge. Herein, the design and fabrication of mesoporous Pt‐decorated CdS nanocrystal assemblies (NCAs) are reported, and their excellent performance for the photocatalytic hydrogen production is demonstrated. These materials comprise varying particle size of Pt (ranging from 1.8 to 3.3 nm) and exhibit 3D nanoscale pore structure within the assembled network. Photocatalytic measurements coupled with UV–vis/NIR optical absorption, photoluminescence, and electrochemical impedance spectroscopy studies suggest that the performance enhancement of these catalytic systems arises from the efficient hole transport at the CdS/electrolyte interface and interparticle Pt/CdS electron‐transfer process as a result of the deposition of Pt. It is found that the Pt‐CdS NCAs catalyst at 5 wt% Pt loading content exerts a 1.2 mmol h?1 H2‐evolution rate under visible‐light irradiation (λ ≥ 420 nm) with an apparent quantum yield of over 70% at wavelength λ = 420 nm in alkaline solution (5 m NaOH), using ethanol (10% v/v) as sacrificial agent. This activity far exceeds those of the single CdS and binary noble metal/CdS systems, demonstrating the potential for practical photocatalytic hydrogen production.  相似文献   

13.
The metallic nanostructures with unique properties of tunable plasmon resonance and large field enhancement have been cooperated with semiconductor to construct hetero‐nanostructures for various applications. Herein, a general and facile approach to synthesize uniform dumbbell‐like gold–sulfide core–shell hetero‐nanostructures is reported. The transformation from Au nanorods (NRs) to dumbbell‐like Au NRs and coating of metal sulfide shells (including Bi2S3, CdS, CuxS, and ZnS) are achieved in a one‐pot reaction. Due to the reshaping of Au core and the deposition of sulfide shell, the plasmon resonances of Au NRs are highly enhanced, especially the about 2 times enhancement for the visible transverse plasmon resonance compared with the initial Au NRs. Owing to the highly enhanced visible light absorption and strong local electric field, we find the photocatalytic activity of dumbbell‐like Au–Bi2S3 NRs is largely enhanced compared with pure Bi2S3 and normal Au–Bi2S3 NRs by testing the photodegradation rate of Rhodamine B (RhB). Moreover, the second‐layer sulfide can be coated and the double‐shell Au–Bi2S3–CdS hetero‐nanostructures show further improved photodegradation rate, especially about 2 times than that of Degussa P25 TiO2 (P25) ascribing to the optimum band arrangement and then the prolonged lifetime of photo‐generated carriers.  相似文献   

14.
The design of transition‐metal chalcogenides (TMCs) photocatalysts for water splitting is highly important, in which both light absorption and interfacial engineering play vital roles in photoexcited electron generation, electron transport, and ultimately speeding up water splitting. To this end, plasmonic metal nanomaterials with surface plasmon resonances are promising candidates. However, it is very difficult to enhance the light absorption and manage the interfacial engineering simultaneously, thus, resulting in suboptimal photocatalytic performance. Here, a doped semiconductor plasmon is proposed to optically and electrically enhance TMCs hydrogen evolution. With the tunability of plasmon resonance in a doped MoO3 semiconductor via hydrogen reduction, the broadband absorption and good interfacial engineering are simultaneously demonstrated in flexible MoS2@MoO3 core–shell nanowire photocatalysts. Better energy‐band alignment with MoS2 can also be realized, thereby achieving improved photoinduced electron generation. More importantly, the defects at the interface between MoO3 and MoS2 are effectively reduced because of precise tunability of plasmon resonance, which enhances electron transport. As a proof of concept, this optimized hybrid nanostructure exhibits outstanding H2 evolution characteristics (841.4 μmol h?1 g?1), excellent stability, and good flexibility. The value is also one of the highest hydrogen evolution activity rates to date among the two dimensional‐layered visible‐light photocatalysts.  相似文献   

15.
Unique multiple heterojunction of Pt-BiOBr/TiO2 nanotube arrays (Pt-BiOBr/TNTAs) was achived by successively loading both Pt nanoparticles (NPs) and BiOBr nanoflkes (NFs) on surface of ordered and spaced TiO2 nanotubes (NTs) using anodization followed by solvothermal and sequential chemical bath deposition (S-CBD) method. The fabricated Pt-BiOBr/TNTAs were fully characterized, and the photocatalytic (PC) activity and stability of Pt-BiOBr/TNTAs toward degradation of methyl orange (MO) under visible-light irradiation (λ>400 nm) were evaluated. The results reveal that multiple heterostructures of Pt/TiO2, Pt/BiOBr and BiOBr/TiO2 are constructed among TNTAs substrate, Pt NPs and BiOBr NFs, and the hybrid Pt-BiOBr/TNTAs catalyst exhibits remarkable visible-light PC activity, favourable reusability and long-term stability. The combined effect of several factors may contribute to the remarkable PC performance, including strong visible-light absorption by both Pt NPs and BiOBr NFs, lower recombination rate of photo-generated electrons and holes attributed to the multiple heterojunction, microstructures for facile light injection and adsorption as well as efficient mass transport, and larger specific surface area for enhancing light absorption, increasing the effective contact area between the absorbed dye molecules and catalyst and benefiting the molecule transport of reactants or products. This work has been supported by the National Natural Science Foundation of China (Nos.51402078 and 51302060), Anhui Provincial Natural Science Foundation (No.1408085QE85), and the Young Scholar Enhancement Foundation (Plan B) of Hefei University of Technology in China (No.JZ2016HGTB0711). E-mail:jqliu@hfut.edu.cn   相似文献   

16.
Graphene‐semiconductor nanocomposites, considered as a kind of most promising photocatalysts, have shown remarkable performance and drawn significant attention in the field of photo‐driven chemical conversion using solar energy, due to the unique physicochemical properties of graphene. The photocatalytic enhancement of graphene‐based nanocomposites is caused by the reduction of the recombination of electron‐hole pairs, the extension of the light absorption range, increase of absorption of light intensity, enhancement of surface active sites, and improvement of chemical stability of photocatalysts. Recent progress in the photocatalysis development of graphene‐based nanocomposites is highlighted and evaluated, focusing on the mechanism of graphene‐enhanced photocatalytic activity, the understanding of electron transport, and the applications of graphene‐based photocatalysts on water splitting, degradation or oxidization of organic contaminants, photoreduction of CO2 into renewable fuels, toxic elimination of heavy metal ions, and antibacterial applications.  相似文献   

17.
Optical effects of the plasmonic structures and the materials effects of the metal nanomaterials have recently been individually studied for enhancing performance of organic solar cells (OSCs). Here, the effects of plasmonically induced carrier generation and enhanced carrier extraction of the carrier transport layer (i.e., plasmonic‐electrical effects) in OSCs are investigated. Enhanced charge extraction in TiO2 as a highly efficient electron transport layer by the incorporation of metal nanoparticles (NPs) is proposed and demonstrated. Efficient device performance is demonstrated by using Au NPs incorporated TiO2 at a plasmonic wavelength (560–600 nm), which is far longer than the originally necessary UV light. By optimizing the concentration ratio of the Au NPs in the NP‐TiO2 composite, the performances of OSCs with various polymer active layers are enhanced and efficiency of 8.74% is reached. An integrated optical and electrical model, which takes into account plasmonic‐induced hot carrier tunneling probability and extraction barrier between TiO2 and the active layer, is introduced. The enhanced charge extraction under plasmonic illumination is attributed to the strong charge injection of plasmonically excited electrons from NPs into TiO2. The mechanism favors trap filling in TiO2, which can lower the effective energy barrier and facilitate carrier transport in OSCs.  相似文献   

18.
Here, a facile wet‐chemistry route for the selective growth of crystalline copper (Cu) along the sides of gold nanorods (Au NRs) in the presence of a hexadecylamine (HDA) is reported. The resulting heterostructures feature part etching of copper by galvanic replacement reaction and form crystalline AuCu alloy metal on one side of the Au NRs. By virtue of the dipeptide (cysteine‐phenylalanine, Cys‐Phe) ligand used during synthesis, the AuCuAu heteronanorods (HNRs) exhibit strong circular dichroism (CD) in the wavelength range of 400–1000 nm. The plasmonic chirality can be tailored by increasing the length of the Au NRs, the scale of Cu nanocrystals on the Au NRs, and the amount of gold chloride for postgrowth, resulting in an anisotropy factor (g factor) as high as 0.57 × 10?2. The strong CD signals are attributed to the local electromagnetic field. Under circular polarized light (CPL) illumination, the chiral plasmonic AuCuAu nanostructure exhibits high efficiency for light polarization dependent reactive oxygen species (1O2) that is 22.31 times that of Au NRs. The results of this study demonstrate that the chiral enantiomer provides a chirality dependent avenue for highly efficient phototherapy.  相似文献   

19.
A 2D/2D heterojunction of black phosphorous (BP)/graphitic carbon nitride (g‐C3N4) is designed and synthesized for photocatalytic H2 evolution. The ice‐assisted exfoliation method developed herein for preparing BP nanosheets from bulk BP, leads to high yield of few‐layer BP nanosheets (≈6 layers on average) with large lateral size at reduced duration and power for liquid exfoliation. The combination of BP with g‐C3N4 protects BP from oxidation and contributes to enhanced activity both under λ > 420 nm and λ > 475 nm light irradiation and to long‐term stability. The H2 production rate of BP/g‐C3N4 (384.17 µmol g?1 h?1) is comparable to, and even surpasses that of the previously reported, precious metal‐loaded photocatalyst under λ > 420 nm light. The efficient charge transfer between BP and g‐C3N4 (likely due to formed N? P bonds) and broadened photon absorption (supported both experimentally and theoretically) contribute to the excellent photocatalytic performance. The possible mechanisms of H2 evolution under various forms of light irradiation is unveiled. This work presents a novel, facile method to prepare 2D nanomaterials and provides a successful paradigm for the design of metal‐free photocatalysts with improved charge‐carrier dynamics for renewable energy conversion.  相似文献   

20.
TiO2 nanorods (NRs) and γ‐Fe2O3 nanocrystals (NCs) passivated with unsaturated long‐chain carboxylic acids, namely 10‐undecylenic acid (10UDA) and oleic acid (OLEA), are covalently anchored to Si(100) at room temperature by UV‐light‐driven reaction of hydrogenated silicon with the carbon–carbon double bond (–C?C–) moieties of the capping surfactants. The high reactivity of vinyl groups towards Si provides a general tool for attaching particles of both materials via Si–C bonds. Interestingly, TiO2 NRs were efficiently attached to silicon even when capped by OLEA. This latter finding has been explained by a photocatalytic mechanism involving the primary role of hydroxyl radicals that can be generated upon bandgap TiO2 photoexcitation with UV light. The increased oxide coverage achievable on Si opens access to further surface manipulation, as demonstrated by the possibility of depositing an additional film of Au nanoparticles onto TiO2 via TiO2‐catalyzed visible‐light‐driven reduction of aqueous AuCl4 ions. Extensive morphological and chemical characterization of the obtained NC‐functionalized Si substrates is provided to support the effectiveness of proposed photochemical approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号