首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Constructing artificial solid‐electrolyte interphase (SEI) on the surface of Li metal is an effective approach to improve ionic conductivity of surface SEI and buffer Li dendrite growth of Li metal anode. However, constructing of homogenous ideal artificial SEI is still a great challenge. Here, a mixed lithium‐ion conductive Li2S/Li2Se (denoted as LSSe) protection layer, fabricated by a facile and inexpensive gas–solid reaction, is employed to construct stable surface SEI with high ionic conductivity. The Li2S/Li2Se‐protected Li metal (denoted as LSSe@Li) exhibits a stable dendrite‐free cycling behavior over 900 h with a high lithium stripping/plating capacity of 3 mAh cm?2 at 1.5 mA cm?2 in the symmetrical cell. Compared to bare Li anode, full batteries paired with LiFePO4, sulfur/carbon, and LiNi0.6Co0.2Mn0.2O2 cathodes all present better battery cycling and rate performance when LSSe@Li anode is used. Moreover, Li2Se exhibits a lower lithium‐ion migration energy barrier in comparison with Li2S which is proved by density functional theory calculation.  相似文献   

2.
Designing high‐activity catalysts and revealing the in‐depth structure–property relationship is particularly important for Li–O2 batteries. Herein, the self‐boosting catalysis of LiCoO2 as an electrocatalyst for Li–O2 batteries and the investigation of its self‐adjustment mechanism using in situ X‐ray absorption spectroscopy and other operando characterization techniques is reported. The intercalation/extraction of Li+ in LiCoO2 not only induces the change in Co valence and modulates the electronic/crystal structure but also tunes the surface disorder degree, lattice strain, and local symmetry, which all affect the catalysis activity. In a discharge, highly ordered LiCoO2 acts as a catalyst to boost oxygen reduction reaction. During charging, the initial extraction of Li+ from LiCoO2 induces Li/oxygen vacancy and Co4+, which deforms CoO6 octahedron as well as lowers the symmetry, and accordingly promotes oxygen evolution reaction. This article offers insights into tuning the activity of catalysts for Li–O2 batteries with the intercalation/extraction of alkali metal ions in traditional cathodes.  相似文献   

3.
Sodium‐ion batteries have been considered one of the most promising power sources beyond Li‐ion batteries. Although the Na metal anode exhibits a high theoretical capacity of 1165 mAh g?1, its application in Na batteries is largely hindered by dendrite growth and low coulombic efficiency. Herein, it is demonstrated that an electrolyte consisting of 1 m sodium tetrafluoroborate in tetraglyme can enable excellent cycling efficiency (99.9%) of a Na metal anode for more than 1000 cycles. This high reversibility of a Na anode can be attributed to a stable solid electrolyte interphase formed on the Na surface, as revealed by cryogenic transmission electron microscopy and X‐ray photoelectron spectroscopy (XPS). These electrolytes also enable excellent cycling stability of Na||hard‐carbon cells and Na||Na2/3Co1/3Mn2/3O2 cells at high rates with very high coulombic efficiencies.  相似文献   

4.
The use of lithium‐ion conductive solid electrolytes offers a promising approach to address the polysulfide shuttle and the lithium‐dendrite problems in lithium‐sulfur (Li‐S) batteries. One critical issue with the development of solid‐electrolyte Li‐S batteries is the electrode–electrolyte interfaces. Herein, a strategic approach is presented by employing a thin layer of a polymer with intrinsic nanoporosity (PIN) on a Li+‐ion conductive solid electrolyte, which significantly enhances the ionic interfaces between the electrodes and the solid electrolyte. Among the various types of Li+‐ion solid electrolytes, NASICON‐type Li1+xAlxTi2‐x(PO4)3 (LATP) offers advantages in terms of Li+‐ion conductivity, stability in ambient environment, and practical viability. However, LATP is susceptible to reaction with both the Li‐metal anode and polysulfides in Li‐S batteries due to the presence of easily reducible Ti4+ ions in it. The coating with a thin layer of PIN presented in this study overcomes the above issues. At the negative‐electrode side, the PIN layer prevents the direct contact of Li‐metal with the LATP solid electrolyte, circumventing the reduction of LATP by Li metal. At the positive electrode side, the PIN layer prevents the migration of polysulfides to the surface of LATP, preventing the reduction of LATP by polysulfides.  相似文献   

5.
The stability of electrolytes against highly reactive, reduced oxygen species is crucial for the development of rechargeable Li–O2 batteries. In this work, the effect of lithium salt concentration in 1,2‐dimethoxyethane (DME)‐based electrolytes on the cycling stability of Li–O2 batteries is investigated systematically. Cells with highly concentrated electrolyte demonstrate greatly enhanced cycling stability under both full discharge/charge (2.0–4.5 V vs Li/Li+) and the capacity‐limited (at 1000 mAh g?1) conditions. These cells also exhibit much less reaction residue on the charged air‐electrode surface and much less corrosion of the Li‐metal anode. Density functional theory calculations are used to calculate molecular orbital energies of the electrolyte components and Gibbs activation energy barriers for the superoxide radical anion in the DME solvent and Li+–(DME) n solvates. In a highly concentrated electrolyte, all DME molecules are coordinated with salt cations, and the C–H bond scission of the DME molecule becomes more difficult. Therefore, the decomposition of the highly concentrated electrolyte can be mitigated, and both air cathodes and Li‐metal anodes exhibit much better reversibility, resulting in improved cyclability of Li–O2 batteries.  相似文献   

6.
Rechargeable batteries with a Li metal anode and Ni‐rich Li[NixCoyMn1?x?y]O2 cathode (Li/Ni‐rich NCM battery) have been emerging as promising energy storage devices because of their high‐energy density. However, Li/Ni‐rich NCM batteries have been plagued by the issue of the thermodynamic instability of the Li metal anode and aggressive surface chemistry of the Ni‐rich cathode against electrolyte solution. In this study, a bi‐functional additive, adiponitrile (C6H8N2), is proposed which can effectively stabilize both the Li metal anode and Ni‐rich NCM cathode interfaces. In the Li/Ni‐rich NCM battery, the addition of 1 wt% adiponitrile in 0.8 m LiTFSI + 0.2 M LiDFOB + 0.05 M LiPF6 dissolved in EMC/FEC = 3:1 electrolyte helps to produce a conductive and robust Li anode/electrolyte interface, while strong coordination between Ni4+ on the delithiated Ni‐rich cathode and nitrile group in adiponitrile reduces parasitic reactions between the electrolyte and Ni‐rich cathode surface. Therefore, upon using 1 wt% adiponitrile, the Li/full concentration gradient Li[Ni0.73Co0.10Mn0.15Al0.02]O2 battery achieves an unprecedented cycle retention of 75% over 830 cycles under high‐capacity loading of 1.8 mAh cm?2 and fast charge–discharge time of 2 h. This work marks an important step in the development of high‐performance Li/Ni‐rich NCM batteries with efficient electrolyte additives.  相似文献   

7.
Solid‐state lithium (Li) batteries using solid electrolytes and Li anodes are highly desirable because of their high energy densities and intrinsic safety. However, low ambient‐temperature conductivity and poor interface compatibility of solid electrolytes as well as Li dendrite formation cause large polarization and poor cycling stability. Herein, a high transference number intercalated composite solid electrolyte (CSE) is prepared by the combination of a solution‐casting and hot‐pressing method using layered lithium montmorillonite, poly(ethylene carbonate), lithium bis(fluorosulfonyl)imide, high‐voltage fluoroethylene carbonate additive, and poly(tetrafluoroethylene) binder. The electrolyte presents high ionic conductivity (3.5 × 10?4 S cm?1), a wide electrochemical window (4.6 V vs Li+/Li), and high ionic transference number (0.83) at 25 °C. In addition, a 3D Li anode is also fabricated via a facile thermal infusion strategy. The synergistic effect of high transference number intercalated electrolyte and 3D Li anode is more favorable to suppress Li dendrites in a working battery. The solid‐state batteries based on LiFePO4 (Al2O3 @ LiNi0.5Co0.2Mn0.3O2), CSE, and 3D Li deliver admirable cycling stability with discharge capacity 145.9 mAh g?1 (150.7 mAh g?1) and capacity retention 91.9% after 200 cycles at 0.5 C (92.0% after 100 cycles at 0.2 C) at 25 °C. This work affords a splendid strategy for high‐performance solid‐state battery.  相似文献   

8.
Aprotic Li–O2 batteries are promising candidates for next‐generation energy storage technologies owing to their high theoretical energy densities. However, their practically achievable specific energy is largely limited by the need for porous conducting matrices as cathode support and the passivation of cathode surface by the insulating Li2O2 product. Herein, a self‐standing and hierarchically porous carbon framework is reported with Co nanoparticles embedded within developed by 3D‐printing of cobalt‐based metal–organic framework (Co‐MOF) using an extrusion‐based printer, followed by appropriate annealing. The novel self‐standing framework possesses good conductivity and necessary mechanical stability, so that it can act as a porous conducting matrix. Moreover, the porous framework consists of abundant micrometer‐sized pores formed between Co‐MOF‐derived carbon flakes and meso‐ and micropores formed within the flakes, which together significantly benefit the efficient deposition of Li2O2 particles and facilitate their decomposition due to the confinement of insulating Li2O2 within the pores and the presence of Co electrocatalysts. Therefore, the self‐standing porous architecture significantly enhances the cell's practical specific energy, achieving a high value of 798 Wh kg?1cell. This study provides an effective approach to increase the practical specific energy for Li–O2 batteries by constructing 3D‐printed framework cathodes.  相似文献   

9.
Using high‐capacity and metallic Li‐free lithium sulfide (Li2S) cathodes offers an alternative solution to address serious safety risks and performance decay caused by uncontrolled dendrite hazards of Li metal anodes in next‐generation Li metal batteries. Practical applications of such a cathode, however, still suffer from low redox activity, unaffordable cost, and poor processability of infusible and moisture‐sensitive Li2S. Herein, these difficulties are addressed by developing a molecular cage–engaged strategy that enables low‐cost production and interfacial engineering of Li2S cathodes for rechargeable Li2S//Si cells. An efficient chemisorption–electrocatalytic interface is built in extremely nanostructured Li2S cathodes by harnessing the confinement/separation effect of metal–organic molecular cages on ionic clusters of air‐stable, soluble, and low‐cost Li salt and their chemical transformation. It effectively boosts the redox activity toward Li2S activation/dissociation and polysulfide chemisorption–conversion in Li‐S batteries, leading to low activation voltage barrier, stable cycle life of 1000 cycles, ultrafast current rate up to 8 C, and high areal capacities of Li2S cathodes with high mass loading. Encouragingly, this highly active Li2S cathode can be applied for constructing truly workable Li2S//Si cells with a high specific energy of 673 Wh kg?1 and stable performance for 200 cycles at high rates against hollow nanostructured Si anode.  相似文献   

10.
Lithium metal is an exciting anode candidate with extra high theoretical specific capacity for new high‐energy rechargeable batteries. However, uncontrolled Li deposition and an unsteady solid electrolyte interface seriously obstruct the commercial application of Li anodes in Li metal batteries. Herein, 3D carbon cloth (CC) supporting N‐doped carbon (CN) nanosheet arrays embedded with tiny Co nanoparticles (CC@CN‐Co) are employed as a lithiophilic framework to regulate homogenous Li nucleation/growth behavior in a working Li metal anode. The emergence of Li dendrites is supposed to be inhibited by the conductive 3D scaffold that reduces local current density. The uniform nucleation of Li can be guided by N‐containing functional groups as they have a strong interaction with Li atoms, and the tiny Co nanoparticles can provide active sites to guide Li deposition. As a result, the current CC@CN‐Co host exhibits Li dendrite–free features and stable cycling performance with a low overpotential (20 mV) throughout 800 h cycles. When paired with the typical LiFePO4 (LFP) cathode, the assembled CC@CN‐Co@Li//LFP@C full cell exhibits outstanding rate capability and improved cycling performance.  相似文献   

11.
3D carbon hosts can enable low-stress Li metal anodes (LMAs) with improved structural and interfacial stability. However, the uneven Li+ flux and large concentration polarization, resulting from intrinsically poor Li affinity and limited porosity of carbon scaffolds, make the precise control of Li plating/stripping still one the key challenges facing advanced LMAs. Here it is demonstrated that a lightweight carbon scaffold, featuring parallel-aligned porous fibers, can work well for homogeneous Li+ flux distribution and reduced concentration gradient to form a stable solid electrolyte interphase, and then synergistically guide smooth Li nucleation/growth even at low temperatures. As a result, the obtained LMAs delivers a high areal capacity up to 15 mAh cm−2, ultralong lifespan (4800 cycles at 4 mA cm−2) with very low voltage hysteresis of ≈21 mV, a high practically available specific capacity of 863.9 mAh g−1 after 1000 cycles, and a long-term stable behavior at low-temperature operation. As coupling with the commercial LiNi1/3Co1/3Mn1/3O2 cathodes and common carbonate-based electrolyte, the corresponding practical cells also possess an ultralong lifespan and outstanding low-temperature functionality. This study not only presents an advanced carbon host candidate but also sheds new light on crucial design principles of carbon scaffolds for practically feasible rechargeable metal batteries.  相似文献   

12.
High-voltage lithium metal batteries (LMBs) are capable to achieve the increasing energy density. However, their cycling life is seriously affected by unstable electrolyte/electrode interfaces and capacity instability at high voltage. Herein, a hydrofluoric acid (HF)-removable additive is proposed to optimize electrode electrolyte interphases for addressing the above issues. N, N-dimethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) aniline (DMPATMB) is used as the electrolyte additive to induce PF6 decomposition to form a dense and robust LiF-rich solid electrolyte interphase (SEI) for suppressing Li dendrite growth. Moreover, DMPATMB can help to form highly Li+ conductive Li3N and LiBO2, which can boost the Li+ transport across SEI and cathode electrolyte interphase (CEI). In addition, DMPATMB can scavenge traced HF in the electrolyte to protect both SEI and CEI from the corrosion. As expected, 4.5 V Li|| LiNi0.6Co0.2Mn0.2O2 batteries with such electrolyte deliver 145 mAh g−1 after 140 cycles at 200 mA g−1. This work provides a novel insight into high-voltage electrolyte additives for LMBs.  相似文献   

13.
The serious safety issues caused by uncontrollable lithium (Li) dendrite growth, especially at high current densities, seriously hamper the rapid charging of Li metal‐based batteries. Here, the construction of Al–Li alloy/LiCl‐based Li anode (ALA/Li anode) is reported by displacement and alloying reaction between an AlCl3‐ionic liquid and a Li foil. This layer not only has high ion‐conductivity and good electron resistivity but also much improved mechanical strength (776 MPa) as well as good flexibility compared to a common solid electrolyte interphase layer (585 MPa). The high mechanical strength of the Al–Li alloy interlayer effectively eliminates volume expansion and dendrite growth in Li metal batteries, so that the ALA/Li anode achieves superior cycling for 1600 h (2.0 mA cm?2) and 1000 cycles at an ultrahigh current density (20 mA cm?2) without dendrite formation in symmetric batteries. In lithium–sulfur batteries, the dense alloy layer prevents direct contact between polysulfides and Li metal, inhibiting the shuttle effect and electrolyte decomposition. Long cycling performance is achieved even at a high current density (4 C) and a low electrolyte/sulfur (6.0 µL mg?1). This easy fabrication process provides a strategy to realize reliable safety during the rapid charging of Li‐metal batteries.  相似文献   

14.
Fast Li‐metal depletion and severe anode pulverization are the most critical obstacles for the energy‐dense Li‐metal full batteries using thin Li‐metal anodes (<50 µm). Here, a wavy‐nanostructured solid electrolyte interphase (SEI) with fast ion transfer kinetics is reported, which can promote high‐efficiency Li‐metal plating/stripping (>98% at 4 mAh cm?2) in conventional carbonate electrolyte. Cryogenic transmission electron microscopy (cryo‐TEM) further reveals the fundamental relationship between wavy‐nanostructured SEI, function, and the electrochemical performance. The wavy SEI with greatly decreased surface diffusion resistance can realize grain coarsening of Li‐metal deposition and exhaustive dissolution of active Li‐metal during the stripping process, which can effectively alleviate “dead Li” accumulation and anode pulverization problems in practical full cells. Under highly challenging conditions (45 µm Li‐metal anodes, 4.3 mAh cm?2 high capacity LiNi0.8Mn0.1Co0.1O2 cathodes), full cells exhibit significantly improved cycling lifespan (170 cycles; 20 cycles for control cells) via the application of wavy SEI.  相似文献   

15.
Lithium–oxygen batteries are attracting more and more interest; however, their poor rechargeability and low efficiency remain critical barriers to practical applications. Herein, hierarchical carbon–nitrogen architectures with both macrochannels and mesopores are prepared through an economical and environmentally benign sol–gel route, which show high electrocatalytic activity and stable cyclability over 160 cycles as cathodes for Li–O2 batteries. Such good performance owes to the coexistence of macrochannels and mesopores in C–N hierarchical architectures, which greatly facilitate the Li+ diffusion and electrolyte immersion, as well as provide an effective space for O2 diffusion and O2/Li2O2 conversion. Additionally, the mechanism of oxygen reduction reactions is discussed with the N‐rich carbon materials through first‐principles computations. The lithiated pyridinic N provides excellent O2 adsorption and activation sites, and thus catalyzes the electrode processes. Therefore, hierarchical carbon–nitrogen architectures with both macrochannels and mesopores are promising cathodes for Li–O2 batteries.  相似文献   

16.
Using a solid‐state electrolyte (SSE) to stabilize the Li metal anode is widely considered a promising route to develop next‐generation high energy density lithium batteries. Here, a new polycrystalline aluminate‐based SSE (named Li–Al–O SSE) with good capability is introduced to protect Li metal. The SSE is formed on the Li metal surface via a chemical reaction between LiOH and triethylaluminum (TEAL) with the existence of LiTFSI‐based electrolyte. It is a continuous film that consists of polycrystalline LiAlO2, Li3AlO3, Al2O3, Li2CO3, LiF, and some organic compounds. Such Li–Al–O SSE possesses a room‐temperature ionic conductivity as high as 1.42 × 10?4 S cm?1. Meanwhile, it effectively protects the Li anode from the corrosion of H2O, O2, and organic solvent, and suppresses the growth of Li dendrite. With the protection of the Li–Al–O SSE, the cycle life of Li|Li symmetric cell and Li|O2 cell is substantially elongated, indicating that the SSE exhibits an excellent protective effect under both inert and oxidizing circumstances.  相似文献   

17.
The main obstacles that hinder the development of efficient lithium sulfur (Li–S) batteries are the polysulfide shuttling effect in sulfur cathode and the uncontrollable growth of dendritic Li in the anode. An all‐purpose flexible electrode that can be used both in sulfur cathode and Li metal anode is reported, and its application in wearable and portable storage electronic devices is demonstrated. The flexible electrode consists of a bimetallic CoNi nanoparticle‐embedded porous conductive scaffold with multiple Co/Ni‐N active sites (CoNi@PNCFs). Both experimental and theoretical analysis show that, when used as the cathode, the CoNi and Co/Ni‐N active sites implanted on the porous CoNi@PNCFs significantly promote chemical immobilization toward soluble lithium polysulfides and their rapid conversion into insoluble Li2S, and therefore effectively mitigates the polysulfide shuttling effect. Additionally, a 3D matrix constructed with porous carbonous skeleton and multiple active centers successfully induces homogenous Li growth, realizing a dendrite‐free Li metal anode. A Li–S battery assembled with S/CoNi@PNCFs cathode and Li/CoNi@PNCFs anode exhibits a high reversible specific capacity of 785 mAh g?1 and long cycle performance at 5 C (capacity fading rate of 0.016% over 1500 cycles).  相似文献   

18.
Li metal is one of the most promising anode materials for high energy density batteries. However, uncontrollable Li dendrite growth and infinite volume change during the charge/discharge process lead to safety issues and capacity decay. Herein, a carbonized metal–organic framework (MOF) nanorod arrays modified carbon cloth (NRA-CC) is developed for uniform Li plating/stripping. The carbonized MOF NRAs effectively convert the CC from lithiophobic to lithiophilic, decreasing the polarization and ensuring homogenous Li nucleation. The 3D interconnected hierarchal CC provides adequate Li nucleation sites for reducing the local current density to avoid Li dendrite growth, and broadens internal space for buffering the volume change during Li plating/stripping. These characteristics afford a stable cycling of the NRA-CC electrode with ultrahigh Coulombic efficiencies of 96.7% after 1000 h cycling at 2 mA cm−2 and a prolonged lifespan of 200 h in the symmetrical cell under ultrahigh areal capacity (12 mAh cm−2) and current (12 mA cm−2). The solid-state batteries assembled with the composite Li anode, high-voltage cathode (LiNi0.5Co0.2Mn0.3O2), and composite solid-state electrolyte also deliver excellent cyclic and rate performance at 25 °C. This work sheds fresh insights on the design principles of a dendrite-free Li metal anode for safe solid-state Li metal batteries.  相似文献   

19.
Lithium–carbon dioxide (Li–CO2) batteries have received wide attention due to their high theoretical energy density and CO2 capture capability. However, this system still faces poor cycling performance and huge overpotential, which stems from the leakage/volatilization of liquid electrolyte and instability of the cathode. A gel polymer electrolyte (GPE)‐based Li–CO2 battery by using a novel pencil‐trace cathode and 0.0025 mol L?1 (M) binuclear cobalt phthalocyanine (Bi‐CoPc)‐containing GPE (Bi‐CoPc‐GPE) is developed here. The cathode, which is prepared by pencil drawing on carbon paper, is stable because of its typical limited‐layered graphitic structure without any binder. In addition, Bi‐CoPc‐GPE, which consists of polymer matrix filled with liquid electrolyte, exhibits excellent ion conductivity (0.86 mS cm?1), effective protection for Li anode, and superior leakproof property. Moreover, Bi‐CoPc acts as a redox mediator to promote the decomposition of discharge products at low charge potential. Interestingly, different from polymer‐shaped discharge products formed in liquid electrolyte–based Li–CO2 batteries, the morphology of products in Li–CO2 batteries using Bi‐CoPc‐GPE is film‐like. Hence, this polymer‐based Li–CO2 battery shows super‐high discharge capacity, low overpotential, and even steadily runs for 120 cycles. This study may pave a new way to develop high‐performance Li–CO2 batteries.  相似文献   

20.
Solid-state electrolytes have drawn enormous attention to reviving lithium batteries but have also been barricaded in lower ionic conductivity at room temperature, awkward interfacial contact, and severe polarization. Herein, a sort of hierarchical composite solid electrolyte combined with a “polymer-in-separator” matrix and “garnet-at-interface” layer is prepared via a facile process. The commercial polyvinylidene fluoride-based separator is applied as a host for the polymer-based ionic conductor, which concurrently inhibits over-polarization of polymer matrix and elevates high-voltage compatibility versus cathode. Attached on the side, the compact garnet (Li6.4La3Zr1.4Ta0.6O12) layer is glued to physically inhibit the overgrowth of lithium dendrite and regulate the interfacial electrochemistry. At 25 °C, the electrolyte exhibits a high ionic conductivity of 2.73 × 10−4 S cm−1 and a decent electrochemical window of 4.77 V. Benefiting from this elaborate electrolyte, the symmetrical Li||Li battery achieves steady lithium plating/stripping more than 4800 h at 0.5 mA cm−2 without dendrites and short-circuit. The solid-state batteries deliver preferable capacity output with outstanding cycling stability (95.2% capacity retained after 500 cycles, 79.0% after 1000 cycles at 1 C) at ambient temperature. This hierarchical structure design of electrolyte may reveal great potentials for future development in fields of solid-state metal batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号