首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Planar integrated systems of micro‐supercapacitors (MSCs) and sensors are of profound importance for 3C electronics, but usually appear poor in compatibility due to the complex connections of device units with multiple mono‐functional materials. Herein, 2D hierarchical ordered dual‐mesoporous polypyrrole/graphene (DM‐PG) nanosheets are developed as bi‐functional active materials for a novel prototype planar integrated system of MSC and NH3 sensor. Owing to effective coupling of conductive graphene and high‐sensitive pseudocapacitive polypyrrole, well‐defined dual‐mesopores of ≈7 and ≈18 nm, hierarchical mesoporous network, and large surface area of 112 m2 g?1, the resultant DM‐PG nanosheets exhibit extraordinary sensing response to NH3 as low as 200 ppb, exceptional selectivity toward NH3 that is much higher than other volatile organic compounds, and outstanding capacitance of 376 F g?1 at 1 mV s?1 for supercapacitors, simultaneously surpassing single‐mesoporous and non‐mesoporous counterparts. Importantly, the bi‐functional DM‐PG‐based MSC‐sensor integrated system represents rapid and stable response exposed to 10–40 ppm of NH3 after only charging for 100 s, remarkable sensitivity of NH3 detection that is close to DM‐PG‐based MSC‐free sensor, impressive flexibility with ≈82% of initial response value even at 180°, and enhanced overall compatibility, thereby holding great promise for ultrathin, miniaturized, body‐attachable, and portable detection of NH3.  相似文献   

2.
Printable and flexible electronics attract sustained attention for their low cost, easy scale up, and potential application in wearable and implantable sensors. However, they are susceptible to scratching, rupture, or other damage from bending or stretching due to their “soft” nature compared to their rigid counterparts (Si‐based electronics), leading to loss of functionality. Self‐healing capability is highly desirable for these “soft” electronic devices. Here, a versatile self‐healing polymer blend dielectric is developed with no added salts and it is integrated into organic field transistors (OFETs) as a gate insulator material. This polymer blend exhibits an unusually high thin film capacitance (1400 nF cm?2 at 120 nm thickness and 20–100 Hz). Furthermore, it shows pronounced electrical and mechanical self‐healing behavior, can serve as the gate dielectric for organic semiconductors, and can even induce healing of the conductivity of a layer coated above it together with the process of healing itself. Based on these attractive properties, we developed a self‐healable, low‐voltage operable, printed, and flexible OFET for the first time, showing promise for vapor sensing as well as conventional OFET applications.  相似文献   

3.
A new small‐molecule nonfullerene acceptor based on the benzo[1,2‐b:4,5‐b′]dithiophene (BDT) fused central core with asymmetrical alkoxy and thienyl side chains, namely TOBDT , is designed and synthesized. The alkoxy unit helps narrow the bandgap, and thienyl side chain helps enhance the intermolecular interaction. As a result, TOBDT is suitable to match the deep‐lying highest occupied molecular orbital (HOMO) of polymer donor PM6 . Then, a strong crystalline acceptor IDIC is introduced as the third component to fabricate as‐cast nonfullerene ternary devices to achieve absorption and morphology control. Addition of IDIC not only mixes well with TOBDT but modulates the morphology of the blend film, which helps to balance the charge transport properties and reduce the photovoltage loss of ternary devices. All these contribute to synergetic improvement of Jsc, Voc, and fill factor parameters, leading to a power conversion efficiency of 14.0% for the as‐cast fullerene‐free ternary device.  相似文献   

4.
We report on our latest improvements in organic field‐effect transistors (OFETs) using ultra‐thin anodized gate insulators. Anodization of titanium (Ti) is an extremely cheap and simple technique to obtain high‐quality, very thin (~ 7.5 nm), pinhole‐free, and robust gate insulators for OFETs. The anodized insulators have been tested in transistors using pentacene and poly(triarylamine) (PTAA) as active layers. The fabricated devices display low‐threshold, normally “off” OFETs with negligible hysteresis, good carrier mobility, high gate capacitance, and exceptionally low inverse subthreshold slope. Device performance is improved via chemical modification of TiO2 with an octadecyltrichlorosilane (OTS) self‐assembled monolayer (SAM). As the result of this combination of favorable properties, we have demonstrated OFETs that can be operated with voltages well below 1 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号