首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 16 毫秒
1.
2D metals have attracted considerable recent attention for their special physical properties, such as charge density waves, magnetism, and superconductivity. However, despite some recent efforts, the synthesis of ultrathin 2D metals nanosheets down to monolayer thickness remains a significant challenge. Herein, by using atomically flat 2D WSe2 or WS2 as the growth substrate, the synthesis of atomically thin 2D metallic MTe2 (M = V, Nb, Ta) single crystals with the thickness down to the monolayer regime and the creation of atomically thin MTe2/WSe2 (WS2) vertical heterojunctions is reported. Comparison with the growth on the SiO2/Si substrate under the same conditions reveals that the utilization of the dangling‐bond‐free WSe2 or WS2 as the van der Waals epitaxy substrates is crucial for the successful realization of atomically thin MTe2 (M = V, Nb, Ta) nanosheets. It is further shown that the epitaxial grown 2D metals can function as van der Waals contacts for 2D semiconductors with little interface damage and improved electronic performance. This study defines a robust van der Waals epitaxy pathway to ultrathin 2D metals, which is essential for fundamental studies and potential technological applications of this new class of materials at the 2D limit.  相似文献   

2.
The synthesis of high‐quality 2D MoTe2 with a desired phase on SiO2/Si substrate is crucial to its diverse applications. A side reaction of Te with the substrate Si leading to SiTe and Si2Te3 tends to happen during growth, resulting in the failure to obtain MoTe2. It has been found that molecular sieves can adsorb the silicon telluride byproducts and eliminate the influence of the side reaction during the chemical vapor deposition synthesis of MoTe2. With the help of molecular sieves, few‐layer 1T′ MoTe2 can be grown from the MoOx precursor. Pure 1T′ MoTe2 and 2H MoTe2 regions in centimeter‐sized areas synthesized on the same piece of SiO2/Si substrate can be obtained by using an overlapped geometry. The strategy provides a new method to controllably synthesize MoTe2 with desired phases and can be generalizable to the synthesis of other tellurium‐based layered materials.  相似文献   

3.
This report presents a simple and efficient method of layer thinning and p‐type doping of WSe2 with vapor XeF2. With this approach, the surface roughness of thinned WSe2 can be controlled to below 0.7 nm at an etched depth of 100 nm. By selecting appropriate vapor XeF2 exposure times, 23‐layer and 109‐layer WSe2 can be thinned down to monolayer and bilayer, respectively. In addition, the etching rate of WSe2 exhibits a significant dependence on vapor XeF2 exposure pressure and thus can be tuned easily for thinning or patterning applications. From Raman, photoluminescence, X‐ray photoelectron spectroscopy (XPS), and electrical characterization, a p‐doping effect of WSe2 induced by vapor XeF2 treatment is evident. Based on the surface composition analysis with XPS, the causes of the p‐doping effect can be attributed to the presence of substoichiometric WOx (x < 3) overlayer, trapped reaction product of WF6, and nonstoichiometric WSex (x > 2). Furthermore, the p‐doping level can be controlled by varying XeF2 exposure time. The thinning and p‐doping of WSe2 with vapor XeF2 have the advantages of easy scale‐up, high etching selectivity, excellent controllability, and compatibility with conventional complementary metal‐oxide‐semiconductor fabrication processes, which is promising for applications of building WSe2 devices with versatile functionalities.  相似文献   

4.
2D layered heterostructures have attracted intensive interests due to their unique optical, transport, and interfacial properties. The laterally stitched heterojunction based on dissimilar 2D transition metal dichalcogenides forms an intrinsic pn junction without the necessity of applying an external voltage. However, no scalable processes are reported to construct the devices with such lateral heterostructures. Here, a scalable strategy, two‐step and location‐selective chemical vapor deposition, is reported to synthesize self‐aligned WSe2–MoS2 monolayer lateral heterojunction arrays and demonstrates their light‐emitting devices. The proposed fabrication process enables the growth of high‐quality interfaces and the first successful observation of electroluminescence at the WSe2–MoS2 lateral heterojunction. The electroluminescence study has confirmed the type‐I alignment at the interface rather than commonly believed type‐II alignment. This self‐aligned growth process paves the way for constructing various 2D lateral heterostructures in a scalable manner, practically important for integrated 2D circuit applications.  相似文献   

5.
For applications ranging from phase equilibria to the processing of second-generation high T c superconductor-coated-conductors, phase diagrams constructed under carbonate-free conditions are needed. Subsolidus phase equilibria of BaO-R2O3-CuO z (R = Ho) have been investigated at (810°C), 21 kPa (875°C) and 0.1 MPa (850 and 930°C) by applying controlled atmosphere methods to minimize the presence of carbonate and CO2 and H2O contamination. Under carbonate-free conditions, most of these phase diagrams are different from those reported in the literature. In this paper, we also review and compare the phase diagrams of ten BaO-R2O3-CuO z systems (R = Nd, Sm, Eu, Gd, Dy, Y, Ho, Er, Tm and Yb) that were previously determined in this laboratory under Among these diagrams, a distinct trend of phase formation and tie-line relationships is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号