首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silica aerogels are amongst the lightest mesoporous solids known and well recognized for their superinsulating properties, but the weak mechanical properties of the inorganic network structure has often narrowed their field of application. Here, the inherent brittleness of dried inorganic gels is tackled through the elaboration of a strong mesoporous silica aerogel interpenetrated with a silylated nanocellulosic scaffold. To this avail, a functionalized scaffold is synthesized by freeze‐drying an aqueous suspension of nanofibrillated cellulose (NFC)—a bio‐based nanomaterial mechanically isolated from renewable resources—in the presence of methyltrimethoxysilane sol. The silylated NFC scaffold displays a high porosity (>98%), high flexibility, and reduced thermal conductivity (λ) compared with classical cellulosic structures. The polysiloxane layer decorating the nanocellulosic scaffold is exploited to promote the attachment of the mesoporous silica matrix onto the nanofibrillated cellulose scaffold (NFCS), leading to a reinforced silica hybrid aerogel with improved thermomechanical properties. The highly porous (>93%) silica‐NFC hybrids displays meso‐ and macroporosity with pore diameters controllable by the NFCS mass fraction, reduced linear shrinkage, improved compressive properties (55% and 126% increase in Young's modulus and tensile strength, respectively), while maintaining superinsulating properties (λ ≤ 20 mW (m K)–1). This study details a new direction for the synthesis of multiscale hybrid silica aerogel structures with tailored properties through the use of alkyltrialkoxysilane prefunctionalized nanocellulosic scaffolds.  相似文献   

2.
Biomimetic materials with biomechanical properties resembling those of native tissues while providing an environment for cell growth and tissue formation, are vital for tissue engineering (TE). Mechanical anisotropy is an important property of native cardiovascular tissues and directly influences tissue function. This study reports fabrication of anisotropic cell‐seeded constructs while retaining control over the construct's architecture and distribution of cells. Newly synthesized poly‐4‐hydroxybutyrate (P4HB) is fabricated with a dry spinning technique to create anelastomeric fibrous scaffold that allows control of fiber diameter, porosity, and rate ofdegradation. To allow cell and tissue ingrowth, hybrid scaffolds with mesenchymalstem cells (MSCs) encapsulated in a photocrosslinkable hydrogel were developed. Culturing the cellularized scaffolds in a cyclic stretch/flexure bioreactor resulted in tissue formation and confirmed the scaffold's performance under mechanical stimulation. In vivo experiments showed that the hybrid scaffold is capable of withstanding physiological pressures when implanted as a patch in the pulmonary artery. Aligned tissue formation occurred on the scaffold luminal surface without macroscopic thrombus formation. This combination of a novel, anisotropic fibrous scaffold and a tunable native‐like hydrogel for cellular encapsulation promoted formation of 3D tissue and provides a biologically functional composite scaffold for soft‐tissue engineering applications.  相似文献   

3.
The regeneration of artificial bone substitutes is a potential strategy for repairing bone defects. However, the development of substitutes with appropriate osteoinductivity and physiochemical properties, such as water uptake and retention, mechanical properties, and biodegradation, remains challenging. Therefore, there is a motivation to develop new synthetic grafts that possess good biocompatibility, physiochemical properties, and osteoinductivity. Here, we fabricate a biocompatible scaffold through the covalent crosslinking of graphene oxide (GO) and carboxymethyl chitosan (CMC). The resulting GO‐CMC scaffold shows significant high water retention (44% water loss) compared with unmodified CMC scaffolds (120% water loss) due to a steric hindrance effect. The modulus and hardness of the GO‐CMC scaffold are 2.75‐ and 3.51‐fold higher, respectively, than those of the CMC scaffold. Furthermore, the osteoinductivity of the GO‐CMC scaffold is enhanced due to the π–π stacking interactions of the GO sheets, which result in striking upregulation of osteogenesis‐related genes, including osteopontin, bone sialoprotein, osterix, osteocalcin, and alkaline phosphatase. Finally, the GO‐CMC scaffold exhibits excellent reparative effects in repairing rat calvarial defects via the synergistic effects of GO and bone morphogenetic protein‐2. This study provides new insights for developing bone substitutes for tissue engineering and regenerative medicine.  相似文献   

4.
In the present study, multifunctional core‐shell fibre mats were designed by co‐electrospinning. These core‐shell fibre mats have three different functionalities: 1) they are magnetic, 2) they change their optical properties with the pH of the media, and 3) they are sensitive to O2. The shell is formed by a fluorescent pH‐sensitive co‐polymer which was previously synthesised and characterized by our research group. The core is a suspension formed by magnetic nanoparticles in a solution made up by a lipophilic indicator dye (oxygen indicator; PtOEP) and, poly‐methyl methacrylate, in THF. The magnetic nanoparticles were prepared by encapsulation of magnetite within a cross‐linked polymeric matrix (MMA‐co‐EDMA). To our knowledge, this is the first time that three functionalities (magnetic properties, sensitivity to pH, and response to O2 concentration) were successful conjugated on the same micro‐ or nano‐material via a facile one‐step process with high yield and cost effectiveness. The morphology of the well‐organized core‐shell fibres were characterized by high resolution scanning electron microcopy (HRSEM), transmission electron microcopy (TEM), and confocal laser microscopy. The luminescent properties of core‐shell fibre mats were analysed and successfully used for simultaneously monitoring pH (from 6 to 8) and O2, showing complete reversibility, high sensitivity (i.e., Ksv = 7.07 bar?1 for determining O2 in aqueous media), high magnetic susceptibility, and short response times.  相似文献   

5.
Volumetric muscle loss (VML) caused by injury or trauma affects the quality of life directly, due to its high incidence, lingering healing, and prolonged duration. Tissue engineered scaffolds have been widely used in muscle regeneration for patients with massive muscle injury. Melatonin (MLT) is a bioactive substance secreted by the pineal gland, which can promote muscle recovery by inhibiting oxidative stress and inflammation. Herein, a biocompatible scaffold is developed using thiolated hyaluronic acid (HA‐SH), collagen I (COL I), and polycaprolactone/melatonin (PCL/MLT) electrospun membranes. This scaffold mimics extracellular matrix (ECM) and architectural features of native muscle, possesses appropriate mechanical property, stiffness and promotes vascularization. It can provide adhesion sites for C2C12 cells and induce their proliferation and differentiation. Moreover, VML rat model is established to evaluate its effect on muscle regeneration. Results demonstrate that this scaffold possesses a practical application for VML.  相似文献   

6.
Cardiac tissue engineering is a promising strategy to prevent functional deterioration or even to enhance cardiac function upon myocardial infarction. Here, electrospun fiber mats containing different combinations of electrically conductive polyaniline, collagen, and/or hyaluronic acid are assessed regarding material properties and compatibility with cardiomyocyte attachment and function. Microstructure analysis reveals that collagen fiber mats contain a wide range of fiber diameters after crosslinking (from ≈300 nm to ≈5 µm); all other fiber mats contain fibers in the range of ≈120 to ≈300 nm. Fiber mats exhibit comparable electrical conductivity to and greater mechanical properties than the native human myocardium, which is considered beneficial. Cell–matrix interaction analysis utilizing postnatal rat cardiomyocytes reveals that the fiber mats are non‐cytotoxic and permit cell attachment and contraction. Fiber mats containing collagen (9.89%), hyaluronic acid (1.1%), and polyaniline (PANi, 1.34%) exhibit the most favorable properties with longer contraction time, higher contractile amplitude, and lower beating rates. Improved contraction is accompanied by increased connexin 43 expression. Importantly, this fiber mat is a suitable material for human‐induced pluripotent stem cell–derived cardiomyocytes regarding cytotoxicity, cell attachment, and function. Collectively, these data demonstrate that fiber mats made of collagen, hyaluronic acid, and polyaniline are promising materials for cardiac tissue engineering.  相似文献   

7.
Native tissues are typically heterogeneous and hierarchically organized, and generating scaffolds that can mimic these properties is critical for tissue engineering applications. By uniquely combining controlled radical polymerization (CRP), end‐functionalization of polymers, and advanced electrospinning techniques, a modular and versatile approach is introduced to generate scaffolds with spatially organized functionality. Poly‐ε‐caprolactone is end functionalized with either a polymerization‐initiating group or a cell‐binding peptide motif cyclic Arg‐Gly‐Asp‐Ser (cRGDS), and are each sequentially electrospun to produce zonally discrete bilayers within a continuous fiber scaffold. The polymerization‐initiating group is then used to graft an antifouling polymer bottlebrush based on poly(ethylene glycol) from the fiber surface using CRP exclusively within one bilayer of the scaffold. The ability to include additional multifunctionality during CRP is showcased by integrating a biotinylated monomer unit into the polymerization step allowing postmodification of the scaffold with streptavidin‐coupled moieties. These combined processing techniques result in an effective bilayered and dual‐functionality scaffold with a cell‐adhesive surface and an opposing antifouling non‐cell‐adhesive surface in zonally specific regions across the thickness of the scaffold, demonstrated through fluorescent labelling and cell adhesion studies. This modular and versatile approach combines strategies to produce scaffolds with tailorable properties for many applications in tissue engineering and regenerative medicine.  相似文献   

8.
Polymer electrolyte films are deposited onto highly porous electrospun mats using layer‐by‐layer (LbL) processing to fabricate composite proton conducting membranes. By simply changing the assembly conditions for generation of the LbL film on the nanofiber mat substrate, three different and unique composite film morphologies can be achieved in which the electrospun mats provide mechanical support; the LbL assembly produces highly conductive films that coat the mats in a controlled fashion, separately providing the ionic conductivity and fuel blocking characteristics of the composite membrane. Coating an electrospun mat with the LbL dipping process produces composite membranes with “webbed” morphologies that link the fibers in‐plane and give the composite membrane in‐plane proton conductivities similar to that of the pristine LbL system. In contrast, coating an electrospun mat using the spray‐LbL process without vacuum produces a uniform film that bridges across all of the pores of the mat. These membranes have methanol permeability similar to free‐standing poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6‐dimethyl 1,4‐phenylene oxide) (PDAC/sPPO) thin films. Coating an electrospun mat with the vacuum‐assisted spray‐LbL process produces composite membranes with conformally coated fibers throughout the bulk of the mat with nanometer control of the coating thickness on each fiber. The mechanical properties of the LbL‐coated mats display composite properties, exhibiting the strength of the glassy PDAC/sPPO films when dry and the properties of the underlying electrospun polyamide mat when hydrated. By combining the different spray‐LbL fabrication techniques with electrospun fiber supports and tuning the parameters, mechanically stable membranes with high selectivity can be produced, potentially for use in fuel cell applications.  相似文献   

9.
A self‐healing approach for optically transparent thermoplastic polymers, based on plasticizer‐induced solvent welding, is reported. For the specific system investigated, dibutylphthalate (DBP) filled urea‐formaldehyde capsules are dispersed in a polymethylmethacrylate (PMMA) matrix. Upon a damage event, DBP is released into the crack, and locally plasticizes and swells the polymer, enabling it to remend. Two challenges are addressed to maintain optical transparency: minimization of light scatter from the capsules in the polymer matrix and minimization of light scatter from the healed polymer. PMMA films containing DBP capsules have good transmissive properties as a result of the close index match between PMMA and DBP. The transmission properties are better than, for example, when DBP capsules are dispersed into a poorly index matched matrix, such as polystyrene. In the DBP PMMA system, the healed material is inherently index matched to the polymer matrix and thus the polymer's original optical properties are largely restored. Self‐healing using both small capsules, 1.5 μm in diameter, and large capsules, 75 μm in diameter is demonstrated. Smaller capsules are particularly important for thin polymer films which are not thick enough to hold the larger capsules. Polymer films with smaller capsules also have very good transmission properties due to a minimization of light scattering by the small size of the capsules. Large capsules enable healing of larger damage events, but do inherently result in some light scattering. This plasticizer‐based approach to self‐healing is shown to enable recovery of the protective properties and a portion of the mechanical properties of a polymeric film.  相似文献   

10.
Printable and flexible electronics attract sustained attention for their low cost, easy scale up, and potential application in wearable and implantable sensors. However, they are susceptible to scratching, rupture, or other damage from bending or stretching due to their “soft” nature compared to their rigid counterparts (Si‐based electronics), leading to loss of functionality. Self‐healing capability is highly desirable for these “soft” electronic devices. Here, a versatile self‐healing polymer blend dielectric is developed with no added salts and it is integrated into organic field transistors (OFETs) as a gate insulator material. This polymer blend exhibits an unusually high thin film capacitance (1400 nF cm?2 at 120 nm thickness and 20–100 Hz). Furthermore, it shows pronounced electrical and mechanical self‐healing behavior, can serve as the gate dielectric for organic semiconductors, and can even induce healing of the conductivity of a layer coated above it together with the process of healing itself. Based on these attractive properties, we developed a self‐healable, low‐voltage operable, printed, and flexible OFET for the first time, showing promise for vapor sensing as well as conventional OFET applications.  相似文献   

11.
Bioinspired lubricant‐infused surfaces exhibit various unique properties attributed to their liquid‐like and molecularly smooth nature. Excellent liquid repellency and “slippery” properties, self‐healing, antiicing, anticorrosion characteristics, enhanced heat transfer, antibiofouling, and cell‐repellent properties have been already demonstrated. This progress report highlights some of the recent developments in this rapidly growing area, focusing on properties of lubricant‐infused surfaces, and their emerging applications as well as some future challenges.  相似文献   

12.
With the advent of flexible and wearable electronics and sensors, there is an urgent need to develop energy‐harvesting solutions that are compatible with such wearables. However, many of the proposed energy‐harvesting solutions lack the necessary mechanical properties, which make them susceptible to damage by repetitive and continuous mechanical stresses, leading to serious degradation in device performance. Developing new energy materials that possess high deformability and self‐healability is essential to realize self‐powered devices. Herein, a thermoelectric ternary composite is demonstrated that possesses both self‐healing and stretchable properties produced via 3D‐printing method. The ternary composite films provide stable thermoelectric performance during viscoelastic deformation, up to 35% tensile strain. Importantly, after being completely severed by cutting, the composite films autonomously recover their thermoelectric properties with a rapid response time of around one second. Using this self‐healable and solution‐processable composite, 3D‐printed thermoelectric generators are fabricated, which retain above 85% of their initial power output, even after repetitive cutting and self‐healing. This approach represents a significant step in achieving damage‐free and truly wearable 3D‐printed organic thermoelectrics.  相似文献   

13.
Graphene foam (GrF)/polylactic acid–poly‐ε‐caprolactone copolymer (PLC) hybrid (GrF‐PLC) scaffold is synthesized in order to utilize both the desirable properties of graphene and that of foams such as excellent structural characteristics and a networked 3‐D structure for cells to proliferate in. The hybrid scaffold is synthesized by a dip‐coating method that enables retention of the porous 3D structure. The excellent wettability of PLC with graphene foam along with the formation of PLC bridges leads to a ≈3700% enhancement in strength and a ≈3100% increase in ductility in the GrF‐PLC scaffold. Biocompatibility of both graphene foam and GrF‐PLC scaffold is demonstrated by culturing of human mesenchymal stem cells (hMSCs) for 28 days, a period over which cell proliferation is robust. The hMSCs are differentiated in chondrogenic media and supported chondrogenesis in both scaffolds. The demand for aggrecan extracellular matrix protein synthesis is reduced in hybrids due to improved bearing of cell‐induced loads, this may be critical for ensuring adequate cellular distribution and layering of extracellular matrix. Hence, the unique mechanical and biotolerant properties of the GrF‐PLC scaffold are suited for musculoskeletal tissue engineering applications, such as the growth of de novo cartilage to replace cartilage lost due to injury or osteoarthritis.  相似文献   

14.
Hydrogel‐based scaffolds are widely used for culturing cells in three dimensions due to their tissue‐like water content and tunable biochemical and physical properties. Most conventional hydrogels lack the macroporosity desirable for efficient cell proliferation and migration and have limited flexibility when subject to mechanical load. Here microribbon‐like elastomers that, when photocrosslinked, can form macroporous and highly flexible scaffolds that support cell proliferation in 3D are developed. These microribbons are produced by wet‐spinning gelatin solution into microfibers, followed by drying in acetone, which causes asymmetrical collapse of microfibers to form microribbon‐like structures. Gelatin microribbons are then modified using methacrylate anhydride to allow further photocrosslinking into 3D scaffolds. The macroporosity and mechanical properties of the microribbon‐based scaffold may be tuned by varying wet‐spinning rate, drying temperature, choice of drying agent, level of glutaraldehyde crosslinking, and microribbon density. When encapsulated in the microribbon‐based scaffold, human adipose‐derived stromal cells proliferated up to 30‐fold within 3 weeks. Furthermore, microribbons‐based scaffold demonstrate great flexibility and can sustain up to 90% strain and 3 MPa stress without failing. The unique mechanical properties of microribbon‐based scaffolds make them promising tools for engineering shock‐absorbing tissues such as cartilage and intervertebral discs.  相似文献   

15.
New polyurethane‐based polycaprolactone copolymer networks, with shape recovery properties, are presented here. Once deformed at ambient temperature, they show 100% shape fixation until heated above the melting point, where they recover the initial shape within 22 s. In contrast to current shape memory materials, the new materials do not require deformation at elevated temperature. The stable polymer structure of polyurethane yields a copolymer network that has strength of 10 MPa with an elongation at break of 35%. The copolymer networks are self‐healing at a slightly elevated temperature (70 °C) without any external force, which is required for existing self‐healing materials. This allows for the new materials to have a long life of repeated healing cycles. The presented copolymers show features that are promising for applications as temperature sensors and activating elements.  相似文献   

16.
Integrating self‐healing capabilities into soft electronic devices increases their durability and long‐term reliability. Although some advances have been made, the use of self‐healing electronics in wet and/or (under)water environments has proven to be quite challenging, and has not yet been fully realized. Herein, a new highly water insensitive self‐healing elastomer with high stretchability and mechanical strength that can reach 1100% and ≈6.5 MPa, respectively, is reported. The elastomer exhibits a high (>80%) self‐healing efficiency (after ≈ 24 h) in high humidity and/or different (under)water conditions without the assistance of an external physical and/or chemical triggers. Soft electronic devices made from this elastomer are shown to be highly robust and able to recover their electrical properties after damages in both ambient and aqueous conditions. Moreover, once operated in extreme wet or underwater conditions (e.g., salty sea water), the self‐healing capability leads to the elimination of significant electrical leakage that would be caused by structural damages. This highly efficient self‐healing elastomer can help extend the use of soft electronics outside of the laboratory and allow a wide variety of wet and submarine applications.  相似文献   

17.
Fully simulating the components and microstructures of soft tissue is a challenge for its functional regeneration. A new aligned hydrogel microfiber scaffold for spinal cord regeneration is constructed with photocrosslinked gelatin methacryloyl (GelMA) and electrospinning technology. The directional porous hydrogel fibrous scaffold consistent with nerve axons is vital to guide cell migration and axon extension. The GelMA hydrogel electrospun fibers soak up water more than six times their weight, with a lower Young's modulus, providing a favorable survival and metabolic environment for neuronal cells. GelMA fibers further demonstrate higher antinestin, anti‐Tuj‐1, antisynaptophysin, and anti‐CD31 gene expression in neural stem cells, neuronal cells, synapses, and vascular endothelial cells, respectively. In contrast, anti‐GFAP and anti‐CS56 labeled astrocytes and glial scars of GelMA fibers are shown to be present in a lesser extent compared with gelatin fibers. The soft bionic scaffold constructed with electrospun GelMA hydrogel fibers not only facilitates the migration of neural stem cells and induces their differentiation into neuronal cells, but also inhibits the glial scar formation and promotes angiogenesis. Moreover, the scaffold with a high degree of elasticity can resist deformation without the protection of a bony spinal canal. The bioinspired aligned hydrogel microfiber proves to be efficient and versatile in triggering functional regeneration of the spinal cord.  相似文献   

18.
A general drawback of supramolecular peptide networks is their weak mechanical properties. In order to overcome a similar challenge, mussels have adapted to a pH‐dependent iron complexation strategy for adhesion and curing. This strategy also provides successful stiffening and self‐healing properties. The present study is inspired by the mussel curing strategy to establish iron cross‐link points in self‐assembled peptide networks. The impact of peptide‐iron complexation on the morphology and secondary structure of the supramolecular nanofibers is characterized by scanning electron microscopy, circular dichroism and Fourier transform infrared spectroscopy. Mechanical properties of the cross‐linked network are probed by small angle oscillatory rheology and nanoindentation by atomic force microscopy. It is shown that iron complexation has no influence on self‐assembly and β‐sheet‐driven elongation of the nanofibers. On the other hand, the organic‐inorganic hybrid network of iron cross‐linked nanofibers demonstrates strong mechanical properties comparable to that of covalently cross‐linked network. Strikingly, iron cross‐linking does not inhibit intrinsic reversibility of supramolecular peptide polymers into disassembled building blocks and the self‐healing ability upon high shear load. The strategy described here could be extended to improve mechanical properties of a wide range of supramolecular polymer networks.  相似文献   

19.
The rapid progress in flexible electronic devices has attracted immense interest in many applications, such as health monitoring devices, sensory skins, and implantable apparatus. Here, inspired by the adhesion features of mussels and the color shift mechanism of chameleons, a novel stretchable, adhesive, and conductive structural color film is presented for visually flexible electronics. The film is generated by adding a conductive carbon nanotubes polydopamine (PDA) filler into an elastic polyurethane (PU) inverse opal scaffold. Owing to the brilliant flexibility and inverse opal structure of the PU layer, the film shows stable stretchability and brilliant structural color. Besides, the catechol groups on PDA impart the film with high tissue adhesiveness and self‐healing capability. Notably, because of its responsiveness, the resultant film is endowed with color‐changing ability that responds to motions, which can function as dual‐signal soft human‐motion sensors for real‐time color‐sensing and electrical signal monitoring. These features make the bio‐inspired hydrogel‐based electronics highly potential in the flexible electronics field.  相似文献   

20.
Step‐growth Diels–Alder (DA) networks using furan and maleimide groups are particularly useful in forming thermally remendable crosslinked polymers, due to the dramatic shift in equilibrium over a relatively low temperature range as compared with other diene‐dienophile pairs. However, the efficient healing observed in these materials at high temperature is directly tied to their ability to depolymerize and flow, and thermal treatment often results in deformation of the original shape. To overcome this limitation, a hybrid network material is developed, which consists of orthogonal Diels–Alder and polyurethane networks. Both step‐growth networks form simultaneously at elevated temperature without the presence of a catalyst. At high temperatures, the Diels–Alder network depolymerizes and flows into fractures through capillary action, while the polyurethane serves as a scaffold to maintain the overall shape of the sample. The DA network then repolymerizes at lower temperatures, creating a crosslinked, scar‐like “patch” throughout the crack. This healing process is repeatable without concern of monomer depletion. During heating through the glass transition, a shape memory “assist” is observed, which reverses some of the localized damage by bringing broken edges closer together. Samples are repeatedly damaged and then healed through temperature cycling, as evidenced through tensile fracture tests and electrochemical conductivity tests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号