首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prolonged circulation, specific and effective uptake by tumor cells, and rapid intracellular drug release are three main factors for the drug delivery systems to win the battle against metastatic breast cancer. In this work, a tumor microenvironment‐adaptive nanoparticle co‐loading paclitaxel (PTX) and the anti‐metastasis siRNA targeting Twist is prepared. The nanoparticle consists of a pH‐sensitive core, a cationic shell, and a matrix metalloproteinase (MMP)‐cleavable polyethylene glycol (PEG) corona conjugated via a peptide linker. PEG will be cut away by MMPs at the tumor site, which endows the nanoparticle with smaller particle size and higher positive charge, leading to more efficient cellular uptake in tumor cells and higher intra‐tumor accumulation of both PTX and siRNA in the 4T1 tumor‐bearing mice models compared to the nanoparticles with irremovable PEG. In addition, acid‐triggered drug release in endo/lysosomes is achieved through the pH‐sensitive core. As a result, the MMP/pH dual‐sensitive nanoparticles significantly inhibit tumor growth and pulmonary metastasis. Therefore, this tumor‐microenvironment‐adaptive nanoparticle can be a promising codelivery vector for effective therapy of metastatic breast cancer due to simultaneously satisfying the requirements of long circulating time, efficient tumor cell targeting, and fast intracellular drug release.  相似文献   

2.
Here, a new type of structure‐invertible, redox‐responsive polymeric nanoparticle for the efficient co‐delivery of nucleic acids and hydrophobic drugs in vitro and in vivo is reported for the first time, to combat the major challenges facing combination cancer therapy. The co‐delivery vector, which is prepared by conjugating branched poly(ethylene glycol) with dendrimers of two generations (G2) through disulfide linkages, is able to complex nucleic acids and load hydrophobic drugs with high loading capacity through structure inversion. The cleavage of disulfide linkages at intracellular glutathione‐rich reduction environment significantly decreases the cytotoxicity, and promotes more efficient drug release and gene transfection in vitro and in vivo. The co‐delivery carrier also displays enhanced endosomal escape capability and improved serum stability in vitro as compared with G2, and exhibits prolonged residence time and stronger transfection activity in vivo. Most importantly, co‐delivery of doxorubicin (DOX) and B‐cell lymphoma 2 (Bcl‐2) small interfering RNA (siRNA) exerts a combinational effect against tumor growth in murine tumor models in vivo, which is much more effective than either DOX or Bcl‐2 siRNA‐based monotherapy. The structure‐invertible nanoparticles may constitute a promising stimuli‐responsive system for the efficacious co‐delivery of multiple cargoes in future clinical applications of combination cancer therapies.  相似文献   

3.
A polymeric nanoparticle comprised of surface furan groups is used to bind, by Diels–Alder (DA) coupling chemistry, both targeting anti‐human epidermal growth factor receptor 2 (anti‐HER2) antibodies and chemotherapeutic doxorubicin (DOX) for targeted, intracellular delivery of DOX. In this new approach for delivery, where both chemotherapeutic and targeting ligand are attached, for the first time, to the surface of the delivery vehicle, the nuclear localization of DOX in HER2‐overexpressing breast cancer SKBR‐3 cells is demonstrated, as determined by confocal laser scanning microscopy. Flow cytometric analysis shows that the conjugated DOX maintains its biological function and induces similar apoptotic progression in SKBR‐3 cells as free DOX. The viable cell counts of SKBR‐3 cancer cells following incubation with different nanoparticle formulations demonstrates that the combined DOX and anti‐HER2 nanoparticle is more efficacious than the nanoparticle formulation with either DOX or anti‐HER2 alone. While free DOX shows similar cytotoxicity against both cancerous SKBR‐3 cells and healthy HMEC‐1 cells, the combined DOX‐anti‐HER2 nanoparticle is significantly more cytotoxic against SKBR‐3 cells than HMEC‐1 cells, suggesting the benefit of nanoparticle‐conjugated DOX for cell type‐specific targeting. The DOX‐conjugated immuno‐nanoparticle represents an entirely new method for localized co‐delivery of chemotherapeutics and antibodies.  相似文献   

4.
Targeted delivery remains the major limitation in the development of small interfering RNA (siRNA) therapeutics. The successful siRNA multistep delivery requires precise carriers of substantial complexity. To achieve this, a monodisperse carrier is presented, synthesized by solid‐phase supported chemistry. The sequence‐defined assembly contains two oleic acids attached to a cationizable oligoaminoamide backbone in T‐shape configuration, and a terminal azide functionality for coupling to the atherosclerotic plaque‐specific peptide‐1 (AP‐1) as the cell targeting ligand for interleukin‐4 receptor (IL‐4R) which is overexpressed in a variety of solid cancers. For combined cytosolic delivery with siRNA, different apoptotic peptides (KLK, BAK, and BAD) are covalently conjugated via bioreversible disulfide linkage to the 5′‐end of the siRNA sense strand. siRNA‐KLK conjugates provide the highest antitumoral potency. The optimized targeted carrier is complexed with dual antitumoral siEG5‐KLK conjugates. The functionality of each subdomain is individually confirmed. The lipo‐oligomer confers stable assembly of siRNA conjugates into spherical 150–250 nm sized nanoparticles. Click‐shielding with dibenzocyclootyne‐PEG‐AP‐1 (DBCO‐PEG‐AP‐1) mediates an IL‐4R‐specific cell targeting and gene silencing in tumor cells. Most importantly, formulation of the siEG5‐KLK conjugate displays enhanced apoptotic tumor cell killing due to the combined effect of mitotic arrest by EG5 gene silencing and mitochondrial membrane disruption by KLK.  相似文献   

5.
Carbon‐based nanomaterials have been considered promising candidates to mimic certain structure and function of native extracellular matrix materials for tissue engineering. Significant progress has been made in fabricating carbon nanoparticle‐incorporated cell culture substrates, but only a limited number of studies have been reported on the development of 3D tissue constructs using these nanomaterials. Here, a novel approach to engineer 3D multilayer constructs using layer‐by‐layer (LbL) assembly of cells separated with self‐assembled graphene oxide (GO)‐based thin films is presented. The GO‐based structures are shown to serve as cell adhesive sheets that effectively facilitate the formation of multilayer cell constructs with interlayer connectivity. By controlling the amount of GO deposited in forming the thin films, the thickness of the multilayer tissue constructs could be tuned with high cell viability. Specifically, this approach could be useful for creating dense and tightly connected cardiac tissues through the co‐culture of cardiomyocytes and other cell types. In this work, the fabrication of stand‐alone multilayer cardiac tissues with strong spontaneous beating behavior and programmable pumping properties is demonstrated. Therefore, this LbL‐based cell construct fabrication approach, utilizing GO thin films formed directly on cell surfaces, has great potential in engineering 3D tissue structures with improved organization, electrophysiological function, and mechanical integrity.  相似文献   

6.
The use of metal oxide interlayers in polymer solar cells has great potential because metal oxides are abundant, thermally stable, and can be used in flexible devices. Here, a layer‐by‐layer (LbL) protocol is reported as a facile, room‐temperature, solution‐processed method to prepare electron transport layers from commercial ZnO nanoparticles and polyacrylic acid (PAA) with a controlled and tunable porous structure, which provides large interfacial contacts with the active layer. Applying the LbL approach to bulk heterojunction polymer solar cells with an optimized ZnO layer thickness of ≈25 nm yields solar cell power‐conversion efficiencies (PCEs) of ≈6%, exceeding the efficiency of amorphous ZnO interlayers formed by conventional sputtering methods. Interestingly, annealing the ZnO/PAA interlayers in nitrogen and air environments in the range of 60–300 °C reduces the device PCEs by almost 20% to 50%, indicating the importance of conformational changes inherent to the PAA polymer in the LbL‐deposited films to solar cell performance. This protocol suggests a new fabrication method for solution‐processed polymer solar cell devices that does not require postprocessing thermal annealing treatments and that is applicable to flexible devices printed on plastic substrates.  相似文献   

7.
We demonstrated a unique approach that combines a layer‐by‐layer (LbL) self‐assembly method with dendrimer chemistry to functionalize Fe3O4 nanoparticles (NPs) for specific targeting and imaging of cancer cells. In this approach, positively charged Fe3O4 NPs (8.4 nm in diameter) synthesized by controlled co‐precipitation of FeII and FeIII ions were modified with a bilayer composed of polystyrene sulfonate sodium salt and folic acid (FA)‐ and fluorescein isothiocyanate (FI)‐functionalized poly(amidoamine) dendrimers of generation 5 (G5.NH2‐FI‐FA) through electrostatic LbL assembly, followed by an acetylation reaction to neutralize the remaining surface amine groups of G5 dendrimers. Combined flow cytometry, confocal microscopy, transmission electron microscopy, and magnetic resonance imaging studies show that Fe3O4/PSS/G5.NHAc‐FI‐FA NPs can specifically target cancer cells overexpressing FA receptors. The present approach to functionalizing Fe3O4 NPs opens a new avenue to fabricating various NPs for numerous biological sensing and therapeutic applications.  相似文献   

8.
The layer‐by‐layer (LbL) desposition of oppositely charged polyelectrolytes from adsorption solutions of different ionic strength onto ~7 nm diameter carboxylic acid‐derivatized gold nanoparticles has been studied. The polyelectrolyte‐modified nanoparticles were characterized by UV‐vis spectrophotometry, microelectrophoresis, analytical ultracentrifugation, and transmission electron microscopy. UV‐vis data showed that the peak plasmon absorption wavelength of the gold nanoparticles red‐shifted after each adsorption step, and microelectrophoresis experiments revealed a reversal in the surface charge of the nanoparticles following deposition of each layer. These data are consistent with the formation of polyelectrolyte layers on the nanoparticles. Analytical ultracentrifugation showed an increase in mean nanoparticle diameter on adsorption of the polyelectrolytes, confirming the formation of gold‐core/polyelectrolyte‐shell nanoparticles. Transmission electron microscopy studies showed no signs of aggregation of the polyelectrolyte‐coated nanoparticles. The adsorption of the polyelectrolyte‐coated gold nanoparticles onto oppositely charged planar supports has also been examined. UV‐vis spectrophotometry and atomic force microscopy showed increased amounts of nanoparticles were adsorbed with increasing ionic strength of the nanoparticle dispersions. This allows control of the nanoparticle surface loading by varying the salt content in the nanoparticle dispersions used for adsorption. The LbL strategy used in this work is expected to be applicable to other nanoparticles (e.g., semiconductors, phosphors), thus providing a facile means for their controlled surface modification through polyelectrolyte nanolayering. Such nanoparticles are envisaged to have applications in the biomedical and bioanalytical fields, and to be useful building blocks for the creation of advanced nanoparticle‐based films.  相似文献   

9.
For the development of effective anti‐cancer vaccines, tumor associated antigens need to be internalized by antigen presenting cells alongside specific co‐stimulatory signals. Interestingly, relative to soluble antigens, nano‐ and micro‐particulate antigens are much better presented to CD8 T cells, a crucial step in the induction of cytotoxic T cells that can eliminate malignant cells. In this regard, a generic strategy to encapsulate cancer cell derived proteins into a particulate delivery system would be of high interest. Here we present a versatile approach to incorporate cancer cell proteins into polymeric capsules using the cells themselves as templates for layer‐by‐layer assembly of complimentary interacting species. After coating, the cells are killed by hypo‐osmotic treatment leading to bio‐hybrid capsules loaded with cell lysate. Particular focus is devoted in this work on choosing the optimal coating components and conditions to maximize cell membrane integrity during the coating process, minimize pre‐mature protein release and achieve optimal encapsulation of cell lysate upon lysis of the cells. To further underline the generic nature of our approach, we demonstrate that heat shock proteins, important immune‐activators, can be induced and encapsulated into the bio‐hybrid capsules.  相似文献   

10.
To obtain more biologically relevant data there is a growing interest in the use of living cells for assaying the biological activity of unknown chemical compounds. Density ‘multiplex’ cell‐based assays, where different cell types are mixed in one well and simultaneously investigated upon exposure to a certain compound are beginning to emerge. To be able to identify the cells they should be attached to microscopic carriers that are encoded. This paper investigates how digitally encoded microparticles can be loaded with cells while keeping the digital code in the microcarriers readable. It turns out that coating the surface of the encoded microcarriers with polyelectrolytes using the layer‐by‐layer (LbL) approach provides the microcarriers with a ‘highly functional’ surface. The polyelectrolyte layer allows the growth of the cells, allows the orientation of the cell loaded microcarriers in a magnetic field, and does not hamper the reading of the code. It has further been shown that the cells growing on the polyelectrolyte layer can become transduced by adenoviral particles hosted by the polyelectrolyte layer. It is concluded that the digitally encoded microparticles are promising materials for use in biomedical and pharmaceutical in‐vitro research where cells are used as tools.  相似文献   

11.
Gene therapy offers the potential of mediating disease through modification of specific cellular functions of target cells. However, effective transport of nucleic acids to target cells with minimal side effects remains a challenge despite the use of unique viral and non‐viral delivery approaches. Here, a non‐viral nanoparticle gene carrier that demonstrates effective gene delivery and transfection both in vitro and in vivo is presented. The nanoparticle system (NP–CP–PEI) is made of a superparamagnetic iron oxide nanoparticle (NP), which enables magnetic resonance imaging, coated with a novel copolymer (CP–PEI) comprised of short chain polyethylenimine (PEI) and poly(ethylene glycol) (PEG) grafted to the natural polysaccharide, chitosan (CP), which allows efficient loading and protection of the nucleic acids. The function of each component material in this nanoparticle system is illustrated by comparative studies of three nanoparticle systems of different surface chemistries, through material property characterization, DNA loading and transfection analyses, and toxicity assessment. Significantly, NP–CP–PEI demonstrates an innocuous toxic profile and a high level of expression of the delivered plasmid DNA in a C6 xenograft mouse model, making it a potential candidate for safe in vivo delivery of DNA for gene therapy.  相似文献   

12.
A new type of thin‐film electrode that does not utilize conducting polymers or traditional metal or chemical vapor deposition methods has been developed to create ultrathin flexible electrodes for fuel cells. Using the layer‐by‐layer (LbL) technique, carbon–polymer electrodes have been assembled from polyelectrolytes and stable carbon colloidal dispersions. Thin‐film LbL polyelectrolyte–carbon electrodes (LPCEs) have been successfully assembled atop both metallic and non‐metallic, porous and non‐porous substrates. These electrodes exhibit high electronic conductivities of 2–4 S cm–1, and their porous structure provides ionic conductivities in the range of 10–4 to 10–3 S cm–1. The electrodes show remarkable stability towards oxidizing, acidic, or delaminating basic solutions. In particular, an LPCE consisting of poly(diallyldimethyl ammonium chloride)/poly(2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid)/carbon–platinum assembled on a porous stainless steel support yields an open‐circuit potential similar to that of a pure platinum electrode. With LbL carbon–polymer electrodes, the membrane‐electrode assembly (MEA) in a fuel cell can be made several times thinner, assume multiple geometries, and hence be more compact. The mechanism for LPCE deposition, electrode structure, and miniaturization will be presented and discussed, and demonstrations of the LbL electrodes in a traditional Nafion‐based proton fuel cell and the first demonstration of a thin‐film hydrogen–air “soft” fuel cell fully constructed using multilayer assembly are described.  相似文献   

13.
Polyelectrolyte microcapsules are fabricated by layer‐by‐layer deposition of dextran sulfate and poly‐L ‐arginine layers at the surface of calcium carbonate template microparticles followed by core removal to produce hollow microcapsules. In the context of vaccination, these biodegradable LbL capsules emerge as promising antigen carriers and are believed to have potential for the co‐delivery of antigens and immunomodulators associated within the same particle to enhance and steer the type of immune response. To this end, it is shown that LbL microcapsules can be functionalized at their surface with lipid layers containing immunopotentiators of lipid nature. The potency of the different lipid modified microcapsules to activate dendritic cells (DCs) is demonstrated by increased expression levels of the migration marker CCR7 and the maturation markers CD40 and CD86. Additionally, the DCs cytokine secretion profile is evaluated. The findings reveal that the lipid grafted microcapsules are superior to non‐modified microcapsules in DC activation and suggest their potential as immune modulating antigen delivery systems.  相似文献   

14.
The accurately and efficiently targeted delivery of therapeutic/diagnostic agents into tumor areas in a controllable fashion remains a big challenge. Here, a novel cancer targeting magnetic microbubble is elaborately fabricated. First, the γ‐Fe2O3 magnetic iron oxide nanoparticles are optimized to chemically conjugate on the surface of polymer microbubbles. Then, arginine‐glycine‐aspartic acid‐l ‐tumor necrosis factor‐related apoptosis‐inducing ligand (RGD‐l ‐TRAIL), antitumor targeting fusion protein, is precisely conjugated with magnetic nanoparticles of microbubbles to construct RGD molecularly targeted magnetic microbubble, which is defined as RGD‐l ‐TRAIL@MMBs. Such RGD‐l ‐TRAIL@MMBs is endowed with the multigradient cascade targeting ability following by magnetic targeting, RGD, as well as enhanced permeability and retention effect regulated targeting to result in high cancerous tissue targeting efficiency. Due to the highly specific accumulation of RGD‐l ‐TRAIL@MMBs in the tumor, the accurate diagnostic information of tumor can be obtained by dual ultrasound and magnetic resonance imaging. After imaging, the TRAIL molecules as anticancer agent also get right into the cancer cells by nanoparticle‐ and RGD‐mediated endocytosis to effectively induce the tumor cell apoptosis. Therefore, RGD‐l ‐TRAIL conjugated magnetic microbubbles could be developed as a molecularly targeted multimodality imaging delivery system with the addition of chemotherapeutic cargoes to improve cancer diagnosis and therapy.  相似文献   

15.
Multifunctional mesoporous silica nanoparticles are developed in order to deliver anticancer drugs to specific cancer cells in a targeted and controlled manner. The nanoparticle surface is functionalized with amino‐β‐cyclodextrin rings bridged by cleavable disulfide bonds, blocking drugs inside the mesopores of the nanoparticles. Poly(ethylene glycol) polymers, functionalized with an adamantane unit at one end and a folate unit at the other end, are immobilized onto the nanoparticle surface through strong β‐cyclodextrin/adamantane complexation. The non‐cytotoxic nanoparticles containing the folate targeting units are efficiently trapped by folate‐receptor‐rich HeLa cancer cells through receptormmediated endocytosis, while folate‐receptor‐poor human embryonic kidney 293 normal cells show much lower endocytosis towards nanoparticles under the same conditions. The nanoparticles endocytosed by the cancer cells can release loaded doxorubicin into the cells triggered by acidic endosomal pH. After the nanoparticles escape from the endosome and enter into the cytoplasm of cancer cells, the high concentration of glutathione in the cytoplasm can lead to the removal of the β‐cyclodextrin capping rings by cleaving the pre‐installed disulfide bonds, further promoting the release of doxorubicin from the drug carriers. The high drug‐delivery efficacy of the multifunctional nanoparticles is attributed to the co‐operative effects of folate‐mediated targeting and stimuli‐triggered drug release. The present delivery system capable of delivering drugs in a targeted and controlled manner provides a novel platform for the next generation of therapeutics.  相似文献   

16.
Developing complex supramolecular biomaterials through highly dynamic and reversible noncovalent interactions has attracted great attention from the scientific community aiming key biomedical and biotechnological applications, including tissue engineering, regenerative medicine, or drug delivery. In this study, the authors report the fabrication of hybrid supramolecular multilayered biomaterials, comprising high‐molecular‐weight biopolymers and oppositely charged low‐molecular‐weight peptide amphiphiles (PAs), through combination of self‐assembly and electrostatically driven layer‐by‐layer (LbL) assembly approach. Alginate, an anionic polysaccharide, is used to trigger the self‐assembling capability of positively charged PA and formation of 1D nanofiber networks. The LbL technology is further used to fabricate supramolecular multilayered biomaterials by repeating the alternate deposition of both molecules. The fabrication process is monitored by quartz crystal microbalance, revealing that both materials can be successfully combined to conceive stable supramolecular systems. The morphological properties of the systems are studied by advanced microscopy techniques, revealing the nanostructured dimensions and 1D nanofibrous network of the assembly formed by the two molecules. Enhanced C2C12 cell adhesion, proliferation, and differentiation are observed on nanostructures having PA as outermost layer. Such supramolecular biomaterials demonstrate to be innovative matrices for cell culture and hold great potential to be used in the near future as promising biomimetic supramolecular nanoplatforms for practical applications.  相似文献   

17.
Layer‐by‐layer (LbL) self‐assembly is a versatile technique from which multi­component and stimuli‐responsive nanoscale drug‐carriers can be constructed. Despite the benefits of LbL assembly, the conventional synthetic approach for fabricating LbL nanoparticles requires numerous purification steps that limit scale, yield, efficiency, and potential for clinical translation. In this report, a generalizable method for increasing throughput with LbL assembly is described by using highly scalable, closed‐loop diafiltration to manage intermediate purification steps. This method facilitates highly controlled fabrication of diverse nanoscale LbL formulations smaller than 150 nm composed from solid‐polymer, mesoporous silica, and liposomal vesicles. The technique allows for the deposition of a broad range of polyelectrolytes that included native polysaccharides, linear polypeptides, and synthetic polymers. The cytotoxicity, shelf life, and long‐term storage of LbL nanoparticles produced using this approach are explored. It is found that LbL coated systems can be reliably and rapidly produced: specifically, LbL‐modified liposomes could be lyophilized, stored at room temperature, and reconstituted without compromising drug encapsulation or particle stability, thereby facilitating large scale applications. Overall, this report describes an accessible approach that significantly improves the throughput of nanoscale LbL drug‐carriers that show low toxicity and are amenable to clinically relevant storage conditions.  相似文献   

18.
Layer‐by‐layer (LbL) self‐assemblies have inherent potential as dynamic coatings because of the sensitivity of their building blocks to external stimuli. Here, humidity serves as a feasible trigger to activate the self‐healing of a microporous polyethylenimine/poly(acrylic acid) multilayer film. Microporous structures within the polyelectrolyte multilayer (PEM) film are created by acid treatment, followed by freeze‐drying to remove water. The self‐healing of these micropores can be triggered at 100% relative humidity, under which condition the mobility of the polyelectrolytes is activated. Based on this, a facile and versatile method is suggested for directly integrating hydrophobic drugs into PEM films for surface‐mediated drug delivery. The high porosity of microporous film enables the highest loading (≈303.5 μg cm?2 for a 15‐bilayered film) of triclosan to be a one‐shot process via wicking action and subsequent solvent removal, thus dramatically streamlining the processes and reducing complexities compared to the existing LbL strategies. The self‐healing of a drug‐loaded microporous PEM film significantly reduces the diffusion coefficient of triclosan, which is favorable for the long‐term sustained release of the drug. The dynamic properties of this polymeric coating provide great potential for its use as a delivery platform for hydrophobic drugs in a wide variety of biomedical applications.  相似文献   

19.
Perovskite nanoparticle‐based nanocomposite thin films strictly tailored using unconventional layer‐by‐layer (LbL) assembly in organic media for piezoelectric nanogenerators (NGs) are demonstrated. By employing sub‐20‐nm BaTiO3 nanoparticles stabilized by oleic acid ligands (i.e., OA‐BTONPs) and carboxylic acid (COOH)‐functionalized polymers, such as poly(acrylic acid) (PAA), the resulting OA‐BTONP/PAA nanocomposite multilayers are prepared by exploiting the high affinity between the COOH groups of PAA and the BTONPs. The ferroelectric and piezoelectric performance of the (PAA/OA‐BTONP)n thin films can be precisely controlled by altering the bilayer number, inserted polymer type, and OA‐BTONP size. It is found that the LbL assembly in nonpolar solvent media can effectively increase the quantity of adsorbed OA‐BTONPs, resulting in the dramatic enhancement of electric power output from the piezoelectric NGs. Furthermore, very low leakage currents are detected from the (PAA/OA‐BTONP)n thin films for obtaining highly reliable power‐generating performance of piezoelectric NGs.  相似文献   

20.
Small interfering RNA (siRNA) has significant potential to evolve into a new class of pharmaceutical inhibitors, but technologies that enable robust, tissue‐specific intracellular delivery must be developed before effective clinical translation can be achieved. A pH‐responsive, smart polymeric nanoparticle (SPN) with matrix metalloproteinase (MMP)‐7‐dependent proximity‐activated targeting (PAT) is described here. The PAT‐SPN is designed to trigger cellular uptake and cytosolic delivery of siRNA once activated by MMP‐7, an enzyme whose overexpression is a hallmark of cancer initiation and progression. The PAT‐SPN is composed of a corona‐forming polyethylene glycol (PEG) block, an MMP‐7‐cleavable peptide, a cationic siRNA‐condensing block, and a pH‐responsive, endosomolytic terpolymer block that drives self‐assembly and forms the PAT‐SPN core. With this novel design, the PEG corona shields cellular interactions until it is cleaved in MMP‐7‐rich environments, shifting the SPN ζ‐potential from +5.8 to +14.4 mV and triggering a 2.5 fold increase in carrier internalization. The PAT‐SPN exhibits pH‐dependent membrane disruptive behavior that enables siRNA escape from endo‐lysosomal pathways. Intracellular siRNA delivery and knockdown of the model enzyme luciferase in R221A‐Luc mammary tumor cells is significantly increased by MMP‐7 pre‐activation (p < 0.05). These combined data indicate that the PAT‐SPN provides a promising new platform for tissue‐specific, proximity‐activated siRNA delivery to MMP‐rich pathological environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号