首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Enantiomeric glutamate gelators containing a spiropyran moiety are designed and found to self‐assemble into a nanohelix through gelation. Upon alternating UV and visible light irradiation, the spiropyran experiences a reversible change between a blue zwitterionic merocyanine state and a colorless closed ring state spiropyran in supramolecular gels. This photochromic switch causes a series of subsequent changes in the optical, chiroptical, morphological properties from supramolecular to macroscopic levels. While the solution of the gelator molecules does not show any circular dichroism (CD) signal in the region of 250–700 nm due to the fact that the chromophore is far from the chiral center, the gel shows chiroptical signals such as CD and circularly polarized luminescence (CPL) because of the chirality transfer by the self‐assembly. These signals are reversible upon alternating UV/vis irradiation. Therefore, a quadruple optical and chiroptical switch is developed successfully. During such process, the self‐assembled nanostructures from the enantiomeric supramolecular gels also undergo a reversible change between helices and fibers under the alternating UV and visible light trigger. Furthermore, a rewritable material fabricated from their xerogels on a glass is developed. Such rewritable material can be efficiently printed over 30 cycles without significant loss in contrast and resolution using UV and visible light.  相似文献   

2.
The precisely controllable self‐assembly phenomenon of block copolymers (BCPs) has garnered much attention because it yields well‐defined periodic nanostructures with a periodicity of 5–50 nm. However, from both thermodynamic and kinetic viewpoints, it still remains a challenge to develop a BCP material that can provide sub‐10 nm resolution, high pattern quality, fast pattern formation, and sufficient etch selectivity. To address these challenges, this study reports a BCP system containing a random‐copolymerized block (poly(2‐vinylpyridine‐co‐4‐vinylpyridne)‐b‐poly(dimethylsiloxane) (P(2VP‐co‐4VP)‐b‐PDMS)) that can provide sub‐6 nm resolution, 3σ line edge roughness of 0.89 nm, sub‐1‐min assembly time, and a high etch selectivity over 10. Calculation of the Flory–Huggins interaction parameter (χ) based on Leibler's mean‐field theory and small‐angle X‐ray scattering measurement data confirms the gradual tunability of χ with the controlled addition of 4VP fraction in the P(2VP‐co‐4VP) block. While guaranteeing kinetically fast self‐assembly within one minute using microwave annealing, the best pattern quality resulting from the thermodynamic suppression of line edge fluctuation is achieved with a 4VP weight fraction of 33% in the random‐copolymerized block. This approach enables systematical control of sub‐6 nm scale BCP self‐assembly and will provide a practical patterning solution for diverse nanostructures and devices.  相似文献   

3.
The self‐assembly of peptides enables the construction of self‐assembled peptide nanostructures (SPNs) with chemical composition similar to those of natural proteins; however, the structural complexity and functional properties of SPNs are far beneath those of natural proteins. One of the most fundamental challenges in fabricating more elaborate SPNs lies in developing building blocks that are simultaneously more complex and relatively easy to synthesize. Here, the development of self‐assembling Janus peptide dendrimers (JPDs) is reported, which have fully 3D structures similar to those of globular proteins. For the reliable and convenient synthesis of JPDs, a solid‐phase bifurcation synthesis method is devised. The self‐assembly behavior of JPDs is unique because only the dendrimer generation and not the weight fraction dictates the morphology of SPNs. The coassembly of two JPD building blocks provides an opportunity not only to enlarge the morphological repertoire in a predictable manner but also to discover SPNs with unusual and interesting morphologies. Because JPD assemblies have dual multivalency, i.e., supramolecular and unimolecular multivalency, the JPD system enables the statistical selection of materials with high avidity for the desired cell types and possibly any target receptors.  相似文献   

4.
Highly ordered pattern formation of block copolymers (BCPs) within nanoscale templates is of great interest for generating diverse ordered nanostructures. Here, introduced is a combined methodology of nanotransfer printing (nTP) and BCP self‐assembly to guide the formation of spherical nanodots within a printed crossbar nanotemplate. By successfully accommodating poly(styrene‐b‐dimethylsiloxane) (PS‐b‐PDMS) BCPs in the guiding metallic crossbar nanotemplate (≈30 × 30 nm2), a well‐organized array of single‐domain PDMS spheres (≈10 nm) with a square symmetry is successfully obtained in an extremely short annealing time (<5 s). The self‐consistent field theory simulation results theoretically explain the spontaneous one‐to‐one accommodation of PDMS spheres in the confined area of the crossbar template. This approach can potentially be extended to the many other BCP materials and morphologies to diversify the geometry of self‐assembled BCP and/or transfer‐printed nanopatterns for various types of nanodevice applications.  相似文献   

5.
The directed self‐assembly (DSA) of block copolymers (BCPs) has been suggested as a promising nanofabrication solution. However, further improvements of both the pattern quality and manufacturability remain as critical challenges. Although the use of BCPs with a high Flory‐Huggins interaction parameter (χ) has been suggested as a potential solution, this practical self‐assembly route has yet to be developed due to their extremely slow self‐assembly kinetics. In this study, it is reported that warm solvent annealing (WSA) in a controlled environment can markedly improve both the self‐assembly kinetics and pattern quality. A means of avoiding the undesirable trade‐off between the quality and formation throughput of the self‐assembled patterns, which is a dilemma which arises when using the conventional solvent vapor treatment, is suggested. As a demonstration, the formation of well‐defined 13‐nm‐wide self‐assembled patterns (3σ line edge roughness of ≈2.50 nm) in treatment times of 0.5 min (for 360‐nm‐wide templates) is shown. Self‐consistent field theory (SCFT) simulation results are provided to elucidate the mechanism of the pattern quality improvement realized by WSA.  相似文献   

6.
The self‐assembly of sodium dodecyl benzene sulphonate (SDBS) functionalized graphene sheets (GSs) and horseradish peroxidase (HRP) by electrostatic attraction into novel hierarchical nanostructures in aqueous solution is reported. Data from scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray diffraction demonstrate that the HRP–GSs bionanocomposites feature ordered hierarchical nanostructures with well‐dispersed HRP intercalated between the GSs. UV‐vis and infrared spectra indicate the native structure of HRP is maintained after the assembly, implying good biocompatibility of SDBS‐functionalized GSs. Furthermore, the HRP–GSs composites are utilized for the fabrication of enzyme electrodes (HRP–GSs electrodes). Electrochemical measurements reveal that the resulting HRP–GSs electrodes display high electrocatalytic activity to H2O2 with high sensitivity, wide linear range, low detection limit, and fast amperometric response. These desirable electrochemical performances are attributed to excellent biocompatibility and superb electron transport efficiency of GSs as well as high HRP loading and synergistic catalytic effect of the HRP–GSs bionanocomposites toward H2O2. As graphene can be readily non‐covalently functionalized by “designer” aromatic molecules with different electrostatic properties, the proposed self‐assembly strategy affords a facile and effective platform for the assembly of various biomolecules into hierarchically ordered bionanocomposites in biosensing and biocatalytic applications.  相似文献   

7.
A simple, versatile method for non‐covalent functionalization of graphene based on solution‐phase assembly of alkane‐amine layers is presented. Second‐order Møller–Plesset (MP2) perturbation theory on a cluster model (methylamine on pyrene) yields a binding energy of ≈220 meV for the amine–graphene interaction, which is strong enough to enable formation of a stable aminodecane layer at room temperature. Atomistic molecular dynamics simulations on an assembly of 1‐aminodecane molecules indicate that a self‐assembled monolayer can form, with the alkane chains oriented perpendicular to the graphene basal plane. The calculated monolayer height (≈1.7 nm) is in good agreement with atomic force microscopy data acquired for graphene functionalized with 1‐aminodecane, which yield a continuous layer with mean thickness ≈1.7 nm, albeit with some island defects. Raman data also confirm that self‐assembly of alkane‐amines is a non‐covalent process, i.e., it does not perturb the sp2 hybridization of the graphene. Passivation and adsorbate n‐doping of graphene field‐effect devices using 1‐aminodecane, as well as high‐density binding of plasmonic metal nanoparticles and seeded atomic layer deposition of inorganic dielectrics using 1,10‐diaminodecane are also reported.  相似文献   

8.
A fundamental approach to fabricating a nonstick replica mold with high performance for the manufacturing of high‐resolution nanostructures using mold‐based lithography is presented. Low‐viscosity liquid blends consisting of methacrylate multi‐functionalized silsesquioxane (SSQMA), difunctional acrylics, and a small amount of silicone diacrylate (Si‐DA) with low surface tension were used as nonstick replica‐mold materials. The cured SSQMA/acrylic/Si‐DA networks showed a high resistance to organic solvents (<1.2 wt.%), high UV transparency (>90% at 365 nm), hydrophobicity (water contact angle >90°), high modulus and wide‐range modulus tunability (0.6–4.42 GPa) and small shrinkage (<3% in height). The mold materials with a nonstick property conferred by Si‐DA possessed the ability to form sub‐25‐nm features with a high line‐to‐space ratio (1:1) and a high aspect ratio (4:1). In addition, a sufficiently cured replica mold with a low concentration of residual, uncross‐linked (meth)acrylates was able to successfully replicate sub‐25‐nm features with a high line‐to‐space ratio (1:1) and a high aspect ratio (4:1), even if the release agent was not modified. Furthermore, replica molds can potentially be used to fabricate patterns free of bubble defects because of sufficient gas permeability.  相似文献   

9.
The fabrication of 2D systems for electronic devices is not straightforward, with top‐down low‐yield methods often employed leading to irregular nanostructures and lower quality devices. Here, a simple and reproducible method to trigger self‐assembly of arrays of high aspect‐ratio chiral copper heterostructures templated by the structural anisotropy in black phosphorus (BP) nanosheets is presented. Using quantitative atomic resolution aberration‐corrected scanning transmission electron microscopy imaging, in situ heating transmission electron microscopy and electron energy‐loss spectroscopy arrays of heterostructures forming at speeds exceeding 100 nm s?1 and displaying long‐range order over micrometers are observed. The controlled instigation of the self‐assembly of the Cu heterostructures embedded in BP is achieved using conventional electron beam lithography combined with site specific placement of Cu nanoparticles. Density functional theory calculations are used to investigate the atomic structure and suggest a metallic nature of the Cu heterostructures grown in BP. The findings of this new hybrid material with unique dimensionality, chirality, and metallic nature and its triggered self‐assembly open new and exciting opportunities for next generation, self‐assembling devices.  相似文献   

10.
In this paper a simple, casting solution technique for the preparation of two‐dimensional (2D) arrays of very‐high molecular weight (MW) 1D‐Pc supramolecular inorganic polymers is described. The soluble fluoroaluminium tetra‐tert‐butylphthalocyanine (ttbPcAlF) is synthesized and characterized, which can be self‐assembled to form 2D arrays of very‐high‐MW 1D‐Pc supramolecular inorganic polymers. High‐resolution transmission electron microscopy (HRTEM) demonstrates that the 1D‐ttbPcAlF, having a cofacial ring spacing of ~0.36 nm and an interchain distance of ~1.7 nm, self‐assembles into 2D‐nanosheets (~140 nm in length, ~20 nm in width, and equivalent to MW of 3.2 × 105 g mol?1). The film cast from a 1,2‐dichloroethane (DCE) solution shows a minimum hole‐mobility of ~0.3 cm2 V?1 s?1 at room temperature by flash‐photolysis time‐resolved microwave conductivity (TRMC) measurements and a fairly high dark dc‐conductivity of ~1 × 10?3 S cm?1.  相似文献   

11.
Understanding and controlling 3D nanocrystal self‐assembly is a fundamental challenge in materials science. Assembly enables the unique optical and electronic properties of nanocrystals to be exploited in macroscopic materials, and also opens up the possibility to couple the optical response of nanocrystals to the optical modes of the superlattice. To date, assembly of such nanocrystal superlattices (NCSL) has focussed on fixed, close packed structures with particle separations of just 1–3 nm. To achieve highly crystalline structures with tunable optical response, the nanocrystal interparticle separation needs to be precise and easily variable but >50 nm. Here, we show the preparation of nanocrystal superlattices with spacings of 50–500 nm assembled from gold‐poly‐N‐isopropylacrylamide core‐shell particles and the characterization of their fascinating diffraction behavior by means of UV‐vis spectroscopy. These nanocrystal superlattices exhibit pronounced diffraction in the visible (440‐560 nm) with peak half‐widths of the order of 10 nm. The position of the Bragg peak is simply tuned by adjusting the particle volume fraction. Due to the thermoresponsive nature of the polymer shell, temperature is used to initiate crystallization or melting of the superlattice. Heating and cooling cycles cause highly reversible melting/recrystallization in less than a minute.  相似文献   

12.
We describe a new method for depositing patterned materials, based on non‐covalent trapping of ligands in solvent‐templated nanocavities created in aromatic, self‐assembled monolayer or polymer films. A model has been developed and tested to describe nanocavity formation and the ligand adsorption process, which occurs via ligand exclusion from ambient, aqueous solution into the hydrophobic nanocavities. Ligand adsorption rates and ligand adsorbate reactivity with solution species are governed by ligand size/geometry design factors identified using the model. Spatial control of adsorption is achieved via film photochemical changes that inhibit subsequent ligand adsorption/accessibility (UV or X‐ray) or displacement of entrapped ligands (50 keV electron‐beam) during film patterning. The reactivity of the adsorbed ligand is illustrated by the selective binding of PdII species that catalyze electroless metal deposition. Fabrication of high‐resolution (≈ 50 nm), positive‐tone patterns in nickel with acceptable feature‐edge acuity and critical dimension control (≈ 5 %) is demonstrated.  相似文献   

13.
This paper introduces an approach where the match of two different length scales, i.e., pattern from self‐assembly of block copolymer micelles (< 100 nm) and electron‐beam (e‐beam) writing (> 50 nm), allow the grouping of nanometer‐sized gold clusters in very small numbers in even aperiodic pattern and separation of these groups at length scales that are not accessible by pure self‐assembly. Thus, we could demonstrate the grouping of Au nanoclusters in different geometries such as squares, rings, or spheres.  相似文献   

14.
Developing complex supramolecular biomaterials through highly dynamic and reversible noncovalent interactions has attracted great attention from the scientific community aiming key biomedical and biotechnological applications, including tissue engineering, regenerative medicine, or drug delivery. In this study, the authors report the fabrication of hybrid supramolecular multilayered biomaterials, comprising high‐molecular‐weight biopolymers and oppositely charged low‐molecular‐weight peptide amphiphiles (PAs), through combination of self‐assembly and electrostatically driven layer‐by‐layer (LbL) assembly approach. Alginate, an anionic polysaccharide, is used to trigger the self‐assembling capability of positively charged PA and formation of 1D nanofiber networks. The LbL technology is further used to fabricate supramolecular multilayered biomaterials by repeating the alternate deposition of both molecules. The fabrication process is monitored by quartz crystal microbalance, revealing that both materials can be successfully combined to conceive stable supramolecular systems. The morphological properties of the systems are studied by advanced microscopy techniques, revealing the nanostructured dimensions and 1D nanofibrous network of the assembly formed by the two molecules. Enhanced C2C12 cell adhesion, proliferation, and differentiation are observed on nanostructures having PA as outermost layer. Such supramolecular biomaterials demonstrate to be innovative matrices for cell culture and hold great potential to be used in the near future as promising biomimetic supramolecular nanoplatforms for practical applications.  相似文献   

15.
Ordered nanostructured crystals of thin organic–inorganic metal halide perovskites (OIHPs) are of great interest to researchers because of the dimensional‐dependence of their photoelectronic properties for developing OIHPs with novel properties. Top‐down routes such as nanoimprinting and electron beam lithography are extensively used for nanopatterning OIHPs, while bottom‐up approaches are seldom used. Herein, developed is a simple and robust route, involving the controlled crystallization of the OIHPs templated with a self‐assembled block copolymer (BCP), for fabricating nanopatterned OIHP films with various shapes and nanodomain sizes. When the precursor solution consisting of methylammonium lead halide (MAPbX3, X = Br?, I?) perovskite and poly(styrene)‐block‐poly(2‐vinylpyridine) (PS‐b‐P2VP) is spin‐coated on the substrate, a nanostructured BCP is developed by microphase separation. Spontaneous crystallization of the precursor ions preferentially coordinated with the P2VP domains yields ordered nanocrystals with various nanostructures (cylinders, lamellae, and cylindrical mesh) with controlled domain size (≈40–72 nm). The nanopatterned OIHPs show significantly enhanced photoluminescence (PL) with high resistance to both humidity and heat due to geometrically confining OIHPs in and passivation with the P2VP chains. The self‐assembled OIHP films with high PL performance provide a facile control of color coordinates by color conversion layers in blue‐emitting devices for cool‐white emission.  相似文献   

16.
Nanogap plasmonic structures, which can strongly enhance electromagnetic fields, enable widespread applications in surface‐enhanced Raman spectroscopy (SERS) sensing. Although the directed self‐assembly strategy has been adopted for the fabrication of micro/nanostructures on open surfaces, fabrication of nanogap plasmonic structures on complex substrates or at designated locations still remains a grand challenge. Here, a switchable self‐assembly method is developed to manufacture 3D nanogap plasmonic structures by combining supercritical drying and capillary‐force driven self‐assembly (CFSA) of micropillars fabricated by laser printing. The polymer pillars can stay upright during solvent development via supercritical drying, and then can form the nanogap after metal coating and subsequent CFSA. Due to the excellent flexibility of this method, diverse patterned plasmonic nanogap structures can be fabricated on planar or nonplanar substrates for SERS. The measured SERS signals of different patterned nanogaps in fluidic environment show a maximum enhancement factor ≈8 × 107. Such nanostructures in microchannels also allow localized sensing for anticancer drugs (doxorubicin). Resulting from the marriage of top‐down and self‐assembly techniques, this method provides a facile, effective, and controllable approach for creating nanogap enabled SERS devices in fluidic channels, and hence can advance applications in precision medicine.  相似文献   

17.
In a coded self‐assembly, a simple code is written in the molecule, which self‐assembles the molecules into a fractal like structure, which acts as a seed for the next step. As the molecule turns into a complex seed, the code transforms into another form and several seeds self‐assemble into another structure, which acts as a seed for the next step. Until now, this technology was considered as a prerogative of nature. Here, a dendritic network is used to write a basic code by synthetically attaching 32 molecular rotors and doping two controller molecules in its cavity. The code live, which is an energy transmission path in the molecule, is imaged. When the energy transmission path or code is triggered, a series of products generate one after another spontaneously. Two examples are: i) dendritic seed (5–6 nm)→paired nanowire (≈12 nm)→nanowire (≈200 nm)→microwire (500 nm)→wire like rod (1–2 μm)→jelly→rectangular sheet (5 μm). ii) dendritic seed→nano‐sphere (20 nm)→micro‐sphere (500 nm)→large balls(1 μm)→oval shape rod (5–10 μm)→Y, L or T shaped rod assembly. The energy level interactions are tracked using spectroscopy how exactly a directed energy transfer code generates multi‐step synthesis from nano to the visible scale.  相似文献   

18.
The excitation of surface plasmons in metallic nanostructures provides an opportunity to localize light at the nanoscale, well below the scale of the wavelength of the light. The high local electromagnetic field intensities generated in the vicinity of the nanostructures through this nanofocusing effect are exploited in surface enhanced Raman spectroscopy (SERS). At narrow interparticle gaps, so‐called hot‐spots, the nanofocusing effect is particularly pronounced. Hence, the engineering of substrates with a consistently high density of hot‐spots is a major challenge in the field of SERS. Here, a simple bottom‐up approach is described for the fabrication of highly SERS‐active gold core‐satellite nanostructures, using electrostatic and DNA‐directed self‐assembly. It is demonstrated that well‐defined core‐satellite gold nanostructures can be fabricated without the need for expensive direct‐write nanolithography tools such as electron‐beam lithography (EBL). Self‐assembly also provides excellent control over particle distances on the nanoscale. The as‐fabricated core‐satellite nanostructures exhibit SERS activities that are superior to commercial SERS substrates in signal intensity and reproducibility. This also highlights the potential of bottom‐up self‐assembly strategies for the fabrication of complex, well‐defined functional nanostructures with future applications well beyond the field of sensing.  相似文献   

19.
A facile method to fabricate three‐dimensional branched ZnO/MgO nanowire heterostructures and their application as the efficient light‐extraction layer in light‐emitting diodes are reported. The branched MgO nanowires are produced on the hydrothermally‐grown ZnO nanowires with a small tapering angle towards the tip (≈6°), by the oblique angle flux incidence of MgO. The structural evolution during the growth verifies the formation of the MgO nanoscale islands with strong (111) preferred orientation on very thin (5–7 nm) MgO (110) layer. The MgO nanobranches, then grown on the islands, are polycrystalline consisting of many grains oriented in specific directions of <200> and <220>, supported by the nucleation theory. The LEDs with the branched ZnO/MgO nanowire arrays show a remarkable enhancement in the light output power by 21% compared with that of LEDs with pristine ZnO nanowires. Theoretical calculations using a finite‐difference time‐domain method reveal that the nanostructure is very effective in breaking the wave‐guiding mode inside the ZnO nanowires, extracting more light especially in radial direction through the MgO nanobranches.  相似文献   

20.
Atomic‐precision patterning at large scale is a central requirement for nanotechnology and future electronics that is hindered by the limitations of lithographical techniques. Historically, imperfections of the fabrication tools have been compensated by multi‐patterning using sequential lithography processes. The realization of nanometer‐scale features from much larger patterns through offset stacking of atomically thin masks is demonstrated. A unique mutual stabilization effect between two graphene layers produces atomically abrupt transitions that selectively expose single‐layer covered regions. Bilayer regions, on the other hand, protect the underlying substrate from removal for several hours permitting transfer of atomic thickness variations into lateral features in various semiconductors. Nanoscopic offsets between two 2D materials layers could be introduced through bottom‐up and top‐down approaches, opening up new routes for high‐resolution patterning. A self‐aligned templating approach yields nanometer‐wide bilayer graphene nanoribbons with macroscopic length that produces high‐aspect‐ratio silicon nanowalls. Moreover, offset‐transfer of lithographically patterned graphene layers enables multipatterning of large arrays of semiconductor features whose resolution is not limited by the employed lithography and could reach <10 nm feature size. The results open up a new route to combining design flexibility with unprecedented resolution at large scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号