首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A core–satellite nanotheranostic agent with pH‐dependent photothermal properties, pH‐triggered drug release, and H2O2‐induced catalytic generation of radical medicine is fabricated to give a selective and effective tumor medicine with three modes of action. The nanocomplex (core–satellite mesoporous silica–gold nanocomposite) consists of amino‐group‐functionalized mesoporous silica nanoparticles (MSN‐NH2) linked to L‐cysteine‐derivatized gold nanoparticles (AuNPs‐Cys) with bridging ferrous iron (Fe2+) ions. The AuNPs‐Cys serve as both removable caps that control drug release (doxorubicin) and stimuli‐responsive agents for selective photothermal therapy. Drug release and photothermal therapy are initiated by the cleavage of Fe2+ coordination bonds at low pH and the spontaneous aggregation of the dissociated AuNPs‐Cys. In addition, the Fe2+ is able to catalyze the decomposition of hydrogen peroxide abundant in cancer cells by a Fenton‐like reaction to generate high‐concentration hydroxyl radicals (·OH), which then causes cell damage. This system requires two tumor microenvironment conditions (low pH and considerable amounts of H2O2) to trigger the three therapeutic actions. In vivo data from mouse models show that a tumor can be completely inhibited after two weeks of treatment with the combined chemo‐photothermal method; the data directly demonstrate the efficiency of the MSN–Fe–AuNPs for tumor therapy.  相似文献   

2.
The insufficient blood flow and oxygen supply in solid tumor cause hypoxia, which leads to low sensitivity of tumorous cells and thus causing poor treatment outcome. Here, mesoporous manganese dioxide (mMnO2) with ultrasensitive biodegradability in a tumor microenvironment (TME) is grown on upconversion photodynamic nanoparticles for not only TME‐enhanced bioimaging and drug release, but also for relieving tumor hypoxia, thereby markedly improving photodynamic therapy (PDT). In this nanoplatform, mesoporous silica coated upconversion nanoparticles (UCNPs@mSiO2) with covalently loaded chlorin e6 are obtained as near‐infrared light mediated PDT agents, and then a mMnO2 shell is grown via a facile ultrasonic way. Because of its unique mesoporous structure, the obtained nanoplatform postmodified with polyethylene glycol can load the chemotherapeutic drug of doxorubicin (DOX). When used for antitumor application, the mMnO2 degrades rapidly within the TME, releasing Mn2+ ions, which couple with trimodal (upconversion luminescence, computed tomography (CT), and magnetic resonance imaging) imaging of UCNPs to perform a self‐enhanced imaging. Significantly, the degradation of mMnO2 shell brings an efficient DOX release, and relieve tumor hypoxia by simultaneously inducing decomposition of tumor endogenous H2O2 and reduction of glutathione, thus achieving a highly potent chemo‐photodynamic therapy.  相似文献   

3.
Metal-organic frameworks (MOFs) featuring good biocompatibility and tunable microstructures are developed to generate reactive oxygen species (ROS) for nanocatalytic therapy. However, the relatively low catalytic activity of MOF and intracellular ion homeostasis, a self-protective mechanism to resist the intracellular accumulation of metal ions, results in the undesirable efficacy of tumor therapy. Herein, a therapeutic strategy is introduced of breaking intracellular iron homeostasis for nanocatalytic therapy in synergy with autophagy amplification-promoted ferroptosis, based on etched MOF nanocatalyst (denoted COS@MOF), which is self-etched by thiamine pyrophosphate (TPP) and further modified with autophagy agonist chitosan oligosaccharides (COS). Such self-etched MOF exhibit an open cavity structure that is more conducive to adsorbing reactive molecules and producing more active sites, and an enhanced Fe(II)/Fe(III) ratio, reinforcing catalytic activity for ROS generation. The catalytic process of COS@MOF can be accelerated by overexpressed endogenous hydrogen sulfide (H2S) within colorectal tumors which reduces Fe3+ into more active Fe2+. In vitro and in vivo results demonstrate that COS@MOF amplifies autophagy to break iron homeostasis for facilitating ROS production to promote ferroptosis, achieving synergetic nanocatalytic/ferroptosis tumor therapy. This study provides a promising paradigm to elevate MOF-based catalytic performance in synergy with autophagy amplification-promoted ferroptosis for enhanced therapeutic efficacy.  相似文献   

4.
Chemotherapy resistance and bone defects caused by surgical excision of osteosarcoma have been formidable challenges for clinical treatment. Although recently developed nanocatalysts based on Fenton‐like reactions for catalytic therapy demonstrate high potential to eliminate chemotherapeutic‐insensitive tumors, insufficient concentration of intrinsic hydrogen peroxide (H2O2) and low intratumoral penetrability hinder their applications and therapeutic efficiency. The synchronous enriching intratumor H2O2 amount or nanoagents and promoting osteogenesis are intriguing strategies to solve the dilemma in osteosarcoma therapy. Herein, a multifunctional “all‐in‐one” biomaterial platform is constructed by co‐loading calcium peroxide (CaO2) and iron oxide (Fe3O4) nanoparticles into a three‐dimensional (3D) printing akermanite scaffold (AKT‐Fe3O4‐CaO2). The loaded CaO2 nanoparticles act as H2O2 sources to achieve H2O2 self‐sufficient nanocatalytic osteosarcoma therapy as catalyzed by coloaded Fe3O4 nanoagents, as well as provide calcium ion (Ca2+) pools to enhance bone regeneration. The synergistic osteosarcoma‐therapeutic effect is achieved from both magnetic hyperthermia as‐enabled by Fe3O4 nanoparticles under alternative magnetic fields and hyperthermia‐enhanced Fenton‐like nanocatalytic reaction for producing highly toxic hydroxyl radicals. Importantly, the constructed 3D AKT‐Fe3O4‐CaO2 composite scaffolds are featured with favorable bone‐regeneration activity, providing a worthy base and positive enlightenment for future osteosarcoma treatment with bone defects by the multifunctional biomaterial platforms.  相似文献   

5.
Nanocarriers for chemo‐photothermal therapy suffer from insufficient retention at the tumor site and poor penetration into tumor parenchyma. A smart drug‐dye‐based micelle is designed by making the best of the structural features of small‐molecule drugs. P‐DOX is synthesized by conjugating doxorubicin (DOX) with poly(4‐formylphenyl methacrylate‐co‐2‐(diethylamino) ethyl methacrylate)‐b‐polyoligoethyleneglycol methacrylate (P(FPMA‐co‐DEA)‐b‐POEGMA) via imine linkage. Through the π–π stacking interaction, IR780, a near‐infrared fluorescence dye as well as a photothermal agent, is integrated into the micelles (IR780‐PDMs) with the P‐DOX. The IR780‐PDMs show remarkably long blood circulation (t1/2β = 22.6 h). As a result, a progressive tumor accumulation and retention are presented, which is significant to the sequential drug release. Moreover, when entering into a moderate acidic tumor microenvironment, IR780‐PDMs can dissociate into small‐size conjugates and IR780, which obviously increases the penetration depth of drugs, and then improves the lethality to deep‐seated tumor cells. Owing to the high delivery efficiency and superior chemo‐photothermal therapeutic efficacy of IR780‐PDMs, 97.6% tumor growth in the A549 tumor‐bearing mice is suppressed with a low dose of intravenous injection (DOX, 1.5 mg kg?1; IR780, 0.8 mg kg?1). This work presents a brand‐new strategy for long‐acting intensive cancer therapy.  相似文献   

6.
Fe‐based Fenton agents can generate highly reactive and toxic hydroxyl radicals (·OH) in the tumor microenvironment (TME) for chemodynamic therapy (CDT) with high specificity. However, the strict condition (lower pH environment: 3–4) of the highly efficient Fenton reaction limits its practical application in the clinic. Development of new CDT agents more suitable for TME is significant and challenging. A highly efficient Cu(I)‐based CDT agent, copper(I) phosphide nanocrystals (CP NCs), which is more adaptable to the pH value of TME than Fe‐based agents, thereby producing more ·OH to trigger the apoptosis of cancer cells, is prepared. Moreover, the excess glutathione (GSH) in TME can reduce the Cu(II) produced by a Fenton‐like reaction to Cu(I), further increasing the generation rate of ·OH and relieving tumor antioxidant ability. Furthermore, owing to their strong absorption in the NIR II region, CP NCs exhibit an excellent photothermal conversion effect, which can further improve the Fenton reaction. What is more, CP NCs can act as in situ self‐generation magnetic resonance imaging (MRI) agents owing to the generation of paramagnetic Cu(II) in response to excess H2O2 in the TME. These properties may open up the exploration of copper‐based materials in clinical application of self‐generation imaging‐guided synergetic treatment.  相似文献   

7.
Telluride molybdenum (MoTe2) nanosheets with wide near‐infrared (NIR) absorbance are functionalized with polyethylene glycol‐cyclic arginine‐glycine‐aspartic acid tripeptide (PEG‐cRGD). After loading a chemotherapeutic drug (doxorubicin, DOX), MoTe2‐PEG‐cRGD/DOX is used for combined photothermal therapy and chemotherapy. With the high photothermal conversion efficiency, MoTe2‐PEG‐cRGD/DOX exhibits favorable cells killing ability under NIR irradiation. Owing to the cRGD‐mediated specific tumor targeting, MoTe2‐PEG‐cRGD/DOX shows efficient accumulation in tumors to induce a strong tumor ablation effect. MoTe2‐PEG‐cRGD nanosheets, which are relatively stable in the circulation, could be degraded under NIR ray. The in vitro and in vivo experimental results demonstrate that this theranostic nanoagent, which could accumulate in tumors to allow photothermal imaging and combined therapy, is readily degradable in normal organs to enable rapid excretion and avoid long‐term retention/toxicity, holding great potential to treat tumor effectively.  相似文献   

8.
A Z‐scheme heterojunction with high electron–hole pairs separation efficacy and enhanced redox potentials exhibits tremendous potential in photonic theranostics, but still remains unexplored and challenging. Herein, novel 2D thermally oxidized pyrite nanosheets (TOPY NSs) with FeS2 core and Fe2O3 shell are fabricated combining ball grinding and two‐step probe sonication assisted liquid exfoliation under different solution and air environments. The Fe2O3 shell and Fe3+/Fe2+ inside TOPY NSs can both damage the tumor microenvironment through glutathione consumption and O2 production, and produce ·OH by Fenton reaction. More interestingly, a direct Z‐scheme heterojunction based on FeS2 core and Fe2O3 shell is constructed, in which the electrons in the conduction band (CB) of Fe2O3 are recombined with the holes in the valence band (VB) of FeS2, leaving stronger reduction/oxidation potentials in the CB of FeS2 and the VB of Fe2O3. Under irradiation of a 650 nm laser, the generation of ·O2? from O2 and ·OH from OH? on the CB of FeS2 and VB of Fe2O3, respectively, is largely enhanced. Furthermore, the NSs can be triggered by an 808 nm laser to generate local hyperthermia for photothermal therapy. Moreover, the fluorescent, photoacoustic, and photothermal imaging capabilities of the NSs allow multimodal imaging‐guided cancer treatment.  相似文献   

9.
Near infrared light, especially the second near‐infrared light (NIR II) biowindows with deep penetration and high sensitivity are widely used for optical diagnosis and phototherapy. Here, a novel kind of 2D SnTe@MnO2‐SP nanosheet (NS)‐based nanoplatform is developed for cancer theranostics with NIR II‐mediated precise optical imaging and effective photothermal ablation of mouse xenografted tumors. The 2D SnTe@MnO2‐SP NSs are fabricated via a facile method combining ball‐milling and liquid exfoliation for synthesis of SnTe NSs, and surface coating MnO2 shell and soybean phospholipid (SP). The ultrathin SnTe@MnO2‐SP NSs reveal notably high photothermal conversion efficiency (38.2% in NIR I and 43.9% in NIR II). The SnTe@MnO2‐SP NSs inherently feature tumor microenvironment (TME)‐responsive biodegradability, and the main metabolite TeO32? shows great antitumor effect, coupling synergetic chemotherapy for cancer. Moreover, the SnTe@MnO2‐SP NSs also exhibit great potential for fluorescence, photoacoustic (PA), and photothermal imaging agents in the NIR II biowindow with much higher resolution and sensitivity. This is the first report, as far as is known, with such an inorganic nanoagent setting fluorescence/PA/photothermal imaging and photothermal therapy in NIR II biowindow and TME‐responsive biodegradability rolled into one, which provide insight into the clinical potential for cancer theranostics.  相似文献   

10.
The hypoxic tumor microenvironment (TME) significantly affects cancer treatment. Conventional chemotherapeutic agents cannot effectively target hypoxic tumor tissue, which decreases efficacy and results in severe toxic side effects. To alleviate this problem, a self-driving biomotor is developed by functionalizing MCDP nanoparticles containing calcium peroxide and doxorubicin (DOX) loaded onto polydopamine-coated metal–organic frameworks(MOF), with the anaerobic Bifidobacterium infantis (Bif) for synergistic chemotherapy and chemodynamic therapy (CDT) against breast cancer. The materials of institute Lavoisier (MIL) frameworks + CaO2 + DOX + polydopamine (MCDP)@Bif biohybrid actively targets hypoxic regions of solid tumors via the inherent targeting ability of Bif. Once it has accumulated in the tumor tissue, MCDP generates hydroxyl radicals through the enhanced Fenton-type reactions between Fe2+ and self-generated hydrogen peroxide in the acidic TME. The disruption of Ca2+ homeostasis and resulting mitochondrial Ca2+ overload triggers apoptosis and enhances oxidative stress, promoting tumor cell death. The results found that the DOX concentration in MCDP@Bif-treated tumors is 3.8 times higher than that in free-DOX-treated tumors, which significantly prolongs the median survival of the tumor-bearing mice to 69 days and reduces the toxic side effects of DOX. Therefore, the novel bacteria-driven drug delivery system is highly effective in achieving synergistic chemotherapy and CDT against solid tumors.  相似文献   

11.
Fabricating theranostic nanoparticles combining multimode disease diagnosis and therapeutic has become an emerging approach for personal nanomedicine. However, the diagnostic capability, biocompatibility, and therapeutic efficiency of theranostic nanoplatforms limit their clinic widespread applications. Targeting to the theme of accurate diagnosis and effective therapy of cancer cells, a multifunctional nanoplatform of aptamer and polyethylene glycol (PEG) conjugated MoS2 nanosheets decorated with Cu1.8S nanoparticles (ATPMC) is developed. The ATPMC nanoplatform accomplishes photoluminescence imaging, photoacoustic imaging, and photothermal imaging for in vitro and in vivo tumor cells imaging diagnosis. Meanwhile, the ATPMC nanoplatform facilitates selective delivery of gene probe to detect intracellular microRNA aberrantly expressed in cancer cells and anticancer drug doxorubicin (DOX) for chemotherapy. Moreover, the synergistic interaction of MoS2 and Cu1.8S renders the ATPMC nanoplatform with superb photothermal conversion efficiency. The ATPMC nanoplatform loaded with DOX displays near‐infrared laser‐induced programmed chemotherapy and advanced photothermal therapy, and the targeted chemo‐photothermal therapy presents excellent antitumor efficiency.  相似文献   

12.
Multifunctional nanodrugs integrating multiple therapeutic and imaging functions may find tremendous biomedical applications. However, the development of a simple yet potent theranostic nanosystem with a high payload and microenvironment responsiveness enhancing imaging‐guided cancer therapy is still a great challenge. Herein, a kind of MnCO‐entrapped mesoporous polydopamine nanoparticles are developed, which reach a 1.5 mg payload per gram carrier and exhibit marked theranostic capability through effective CO/Mn2+ generation and photothermal conversion inside the H+ and H2O2‐enriched tumor microenvironment, for a magnetic resonance/photoacoustic bimodal imaging‐guided tumor therapy. The multifunctional nanosystem exhibits a biocompatibility highly desirable for in vivo application and superior performance in inhibiting tumor growth and recurrence via combination CO and photothermal therapy.  相似文献   

13.
The construction of a novel nanocarrier that can break the redox balance in tumor cell is a promising anti-tumor strategy. Herein, a tumor microenvironment (TME)-responsive nanocarrier VC@Lipo is rationally designed by embedding ultrasmall VOx nanozyme and photosensitizer chlorin e6 (Ce6) into liposomes. The size of VC@Lipo nanocarrier is ≈35 nm and can be degraded in the weakly acidic environment of TME. The VOx nanozyme exhibits peroxidase-like activity and generates highly toxic hydroxyl radical ∙OH through Fenton-like reaction and 1O2 in the presence of H2O2 independent of light, and more 1O2 can be generated by the photodynamic effect of Ce6. In addition, the VOx nanozyme can effectively deplete intracellular overexpressed glutathione (GSH) through redox reactions. In vivo experiments demonstrate that the nanocarrier shows excellent biocompatibility, presents the largest enrichment at the tumor site after 6 h of intravenous injection into mice with the highest tumor inhibition rate of 54.18% after laser irradiation. Compared with the single treatment mode, VC@Lipo shows the best synergistic effect of chemodynamic-photodynamic therapy. This work provides a new paradigm for nanocatalytic therapy of cancer and is expected to provide new ideas for precision medicine in cancer.  相似文献   

14.
The tumor microenvironment (TME), which includes acidic and hypoxic conditions, severely impedes the therapeutic efficacy of antitumor agents. Herein, MnO2‐loaded, bovine serum albumin, and PEG co‐modified mesoporous CaSiO3 nanoparticles (CaM‐PB NPs) are developed as a nanoplatform with sequential theranostic functions for the engineering of TME. The MnO2 NPs generate O2 in situ by reacting with endogenous H2O2, relieving the hypoxic state of the TME that further modulates the cancer cell cycle status to S phase, which improves the potency of co‐loaded S phase‐sensitive chemotherapeutic drugs. After the hypoxia relief, CaM‐PB can sustainably release drugs due to the enlarged pores of mesoporous CaSiO3 in the acidic TME, preventing the drug pre‐leakage into the blood circulation and insufficient drug accumulation at tumor sites. Moreover, the Mn2+ released from the MnO2 NPs at tumor sites can potentially serve as a diagnostic agent, enabling the identification of tumor regions by T1‐weighted magnetic resonance imaging during therapy. In vivo pharmacodynamics results demonstrate that these synergetic effects caused by CaM‐PB NPs significantly contribute to the inhibition of tumor progression. Therefore, the CaM‐PB NPs with sequential theranostic functions are a promising system for effective cancer therapy.  相似文献   

15.
Fiber‐shaped aqueous lithium‐ion capacitors (FALICs) featured with high energy and power densities together with outstanding safety characteristics are emerging as promising electrochemical energy‐storage devices for future portable and wearable electronics. However, the lack of high‐capacitance fibrous anodes is a major bottleneck to achieve high performance FALICs. Here, hierarchical MoS2@α‐Fe2O3 core–shell heterostructures consisting of spindle‐shaped α‐Fe2O3 cores and MoS2 nanosheet shells on a carbon nanotube fiber (CNTF) are successfully fabricated. Originating from the unique core/shell architecture and prominent synergetic effects for multi‐components, the resulting MoS2@α‐Fe2O3/CNTF anode delivers a remarkable specific capacitance of 2077.5 mF cm?2 (554.0 F cm?3) at 2 mA cm?2, substantially outperforming most of the previously reported fibrous anode materials. Further density functional theory calculations reveal that the MoS2@α‐Fe2O3 nano‐heterostructure possesses better electrical conductivity and stronger adsorption energy of Li+ than those of the individual MoS2 and α‐Fe2O3. By paring with the self‐standing LiCoO2/CNTF battery‐type cathode, a prototype quasi‐solid‐state FALIC with a maximum operating voltage of 2.0 V is constructed, achieving impressive specific capacitance (253.1 mF cm?2) and admirable energy density (39.6 mWh cm?3). Additionally, the newly developed FALICs can be woven into the flexible textile to power wearable electronics. This work presents a novel effective strategy to design high‐performance anode materials for next‐generation wearable ALICs.  相似文献   

16.
Potassium‐ion batteries (KIBs) in organic electrolytes hold great promise as an electrochemical energy storage technology owing to the abundance of potassium, close redox potential to lithium, and similar electrochemistry with lithium system. Although carbon materials have been studied as KIB anodes, investigations on KIB cathodes have been scarcely reported. A comprehensive study on potassium Prussian blue K0.220Fe[Fe(CN)6]0.805?4.01H2O nanoparticles as a potential cathode material is for the first time reported. The cathode exhibits a high discharge voltage of 3.1–3.4 V, a high reversible capacity of 73.2 mAh g?1, and great cyclability at both low and high rates with a very small capacity decay rate of ≈0.09% per cycle. Electrochemical reaction mechanism analysis identifies the carbon‐coordinated FeIII/FeII couple as redox‐active site and proves structural stability of the cathode during charge/discharge. Furthermore, for the first time, a KIB full‐cell is presented by coupling the nanoparticles with commercial carbon materials. The full‐cell delivers a capacity of 68.5 mAh g?1 at 100 mA g?1 and retains 93.4% of the capacity after 50 cycles. Considering the low cost and material sustainability as well as the great electrochemical performances, this work may pave the way toward more studies on KIB cathodes and trigger future attention on rechargeable KIBs.  相似文献   

17.
The electrochemical properties and phase stability of the multi‐component olivine compound LiMn1/3Fe1/3Co1/3PO4 are studied experimentally and with first‐principles calculation. The formation of a solid solution between LiMnPO4, LiFePO4, and LiCoPO4 at this composition is confirmed by XRD patterns and the calculated energy. The experimental and first‐principle results indicate that there are three distinct regions in the electrochemical profile at quasi‐open‐circuit potentials of 3.5 V, ~4.1 V, and ~4.7 V, which are attributed to Fe3+/Fe2+, Mn3+/Mn2+, and Co3+/Co2+ redox couples, respectively. However, exceptionally large polarization is observed only for the region near 4.1 V of Mn3+/Mn2+ redox couples, implying an intrinsic charge transfer problem. An ex situ XRD study reveals that the reversible one‐phase reaction of Li extraction/insertion mechanism prevails, unexpectedly, for all lithium compositions of LixMn1/3Fe1/3Co1/3PO4 (0 ≤ x ≤ 1) at room temperature. This is the first demonstration that the well‐ordered, non‐nanocrystalline (less than 1% Li–M disorder and a few hundred nanometer size particle) olivine electrode can be operated solely in a one‐phase mode.  相似文献   

18.
Metallic 1T‐phase transition metal dichalcogenides have been recognized for their desirable properties like high surface‐to‐volume ratio, high conductivity, and capacitive behavior, making them outstanding for catalytic and sensing applications. Herein, a hydrogen peroxide (H2O2) biosensor is constructed by the immobilization of hemoglobin (Hb) on 1T‐phase WS2 (1T‐WS2) sheets, and entrapment by glutaraldehyde. 1T‐WS2 not only displays electrocatalytic activity toward the reduction of H2O2 but also provides a high surface‐to‐volume ratio and conductive platform for the immobilization of Hb and facilitation of its electron transfer to the electrode surface. The advantageous role of 1T‐phase WS2 is further demonstrated for the construction of a heme‐based H2O2 biosensor compared to its 1T‐phase MoS2, MoSe2, and WSe2 counterparts. Synergistic interactions between 1T‐WS2 and Hb result in a H2O2 biosensor with high analytical performance in terms of wide range, sensitivity, selectivity, reproducibility, repeatability, and stability. These findings have profound impact in the research fields of electrochemical sensing and biodiagnostics.  相似文献   

19.
Bulk cancer cells and cancer stem cells (CSCs) harbor efficient and adaptive redox systems to help them resist oxidative insults arising from diverse therapeutic modalities. Herein, a tumor microenvironment (TME)-activatable nano-modulator capable of disrupting adaptive redox homeostasis, prepared by integrating FDA-approved xCT inhibitor sulfasalazine (SSZ) into pH-responsive hydroxyethyl starch-doxorubicin conjugate stabilized copper peroxide nanoparticles (HSCPs) is reported. Compared to poly(vinylpyrrolidone) (PVP)-stabilized copper peroxide nanoparticles, HSCPs exhibit superior physiological stability, longer circulation half-life, and higher tumor enrichment. Under an acidic TME, the active components inside HSCPs are productively released along with the disintegration of HSCPs. The specifically generated hydrogen peroxide (H2O2) from copper peroxide nanoparticles furnishes a constant power source for copper-mediated hydroxyl radical (•OH) production, serving as a wealthy supplier for oxidative stress. Meanwhile, the tumor-specific release of Cu2+ and SSZ can induce long-lasting glutathione (GSH) depletion via copper-mediated self-cycling valence transitions and SSZ-blocked GSH biosynthesis, thereby reducing the offsetting action of the antioxidant GSH against oxidative stress. As a result, this sustained oxidative stress potently restrains the growth of aggressive orthotopic breast tumors while suppressing pulmonary metastasis by eradicating CSC populations. The reported smart nanomedicine provides a new paradigm for redox imbalance-triggered cancer therapy.  相似文献   

20.
Mixed oxide‐ion and electronic conductivity can be exploited in dense ceramic membranes for controlled oxygen separation as a means of producing pure oxygen or integrating with catalytic oxidation. Atomistic simulation has been used to probe the energetics of defects, dopant‐vacancy association, nanoscale cluster formation, and oxide‐ion transport in mixed‐conducting CaTiO3. The most favorable energetics for trivalent dopant substitution on the Ti site are found for Mn3+ and Sc3+. Dopant‐vacancy association is predicted for pair clusters and neutral trimers. Low binding energies are found for Sc3+ in accordance with the high oxide‐ion conductivity of Sc‐doped CaTiO3. The preferred location for Fe4+ is in a hexacoordinated site, which supports experimental evidence that Fe4+ promotes the termination of defect chains and increases disorder. A higher oxide‐ion migration energy for a vacancy mechanism is predicted along a pathway adjacent to an Fe3+ ion rather than Fe4+ and Ti4+, consistent with the higher observed activation energies for ionic transport in reduced CaTi(Fe)O3–δ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号