首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halide substitution in phenethylammonium spacer cations (X-PEA+, X  = F, Cl, Br) is a facile strategy to improve the performance of PEA based perovskite solar cells (PSCs). However, the power conversion efficiency (PCE) of X-PEA based quasi-2D (Q-2D) PSCs is still unsatisfactory and the underlying mechanisms are in debate. Here, the in-depth study on the impact of halide substitution on the crystal orientation and multi-phase distribution in PEA based perovskite films are reported. The halide substitution eliminates n  =  1 2D perovskite and thus leads to the perpendicular crystal orientation. Furthermore, nucleation competition exists between small-n and large-n phases in PEA and X-PEA based perovskites. This gives rise to the orderly distribution of different n-phases in the PEA and F-PEA based films, and random distribution in Cl-PEA and Br-PEA based films. As a result, (F-PEA)2MA3Pb4I12 (MA = CH3NH3+, n = 4) based PSCs achieve a PCE of 18.10%, significantly higher than those of PEA (12.23%), Cl-PEA (7.93%) and Br-PEA (6.08%) based PSCs. Moreover, the F-PEA based devices exhibit remarkably improved stability compared to their 3D counterparts.  相似文献   

2.
An important property of hybrid layered perovskite is the possibility to reduce its dimensionality to provide wider band gap and better stability. In this work, 2D perovskite of the structure (PEA)2(MA)n–1PbnBr3n+1 has been sensitized, where PEA is phenyl ethyl‐ammonium, MA is methyl‐ammonium, and using only bromide as the halide. The number of the perovskite layers has been varied (n) from n = 1 through n = ∞. Optical and physical characterization verify the layered structure and the increase in the band gap. The photovoltaic performance shows higher open circuit voltage (Voc) for the quasi 2D perovskite (i.e., n = 40, 50, 60) compared to the 3D perovskite. Voc of 1.3 V without hole transport material (HTM) and Voc of 1.46 V using HTM have been demonstrated, with corresponding efficiency of 6.3% and 8.5%, among the highest reported. The lower mobility and transport in the quasi 2D perovskites have been proved effective to gain high Voc with high efficiency, further supported by ab initio calculations and charge extraction measurements. Bromide is the only halide used in these quasi 2D perovskites, as mixing halides have recently revealed instability of the perovskite structure. These quasi 2D materials are promising candidates for use in optoelectronic applications that simultaneously require high voltage and high efficiency.  相似文献   

3.
The recent rise of low‐dimensional Ruddlesden–Popper (RP) perovskites is notable for superior humidity stability, however they suffer from low power conversion efficiency (PCE). Suitable organic spacer cations with special properties display a critical effect on the performance and stability of perovskite solar cells (PSCs). Herein, a new strategy of designing self‐additive low‐dimensional RP perovskites is first proposed by employing a glycine salt (Gly+) with outstanding additive effect to improve the photovoltaic performance. Due to the strong interaction between C?O and Pb2+, the Gly+ can become a nucleation center and be beneficial to uniform and fast growth of the Gly‐based RP perovskites with larger grain sizes, leading to reduced grain boundary and increased carrier transport. As a result, the Gly‐based self‐additive low‐dimensional RP perovskites exhibit remarkable photoelectric properties, yielding the highest PCE of 18.06% for Gly (n = 8) devices and 15.61% for Gly (n = 4) devices with negligible hysteresis. Furthermore, the Gly‐based devices without encapsulation show excellent long‐term stability against humidity, heat, and UV light in comparison to BA‐based low‐dimensional PSCs. This approach provides a feasible design strategy of new‐type low‐dimensional RP perovskites to obtain highly efficient and stable devices for next‐generation photovoltaic applications.  相似文献   

4.
2D perovskites have attracted extensive attention due to their excellent stability compared with 3D perovskites. However, the intrinsic hydrophilicity of introduced alkylammonium salts effects the humidity stability of 2D/3D perovskites. Devices based on longer chain alkylammonium salts show improvement in hydrophobicity but lower efficiency due to the poorer charge transport among various layers. To solve this issue, two hydrophobic short‐chain alkylammonium salts with halogen functional groups (2‐chloroethylamine, CEA+ and 2‐bromoethylamine, BEA+) are introduced into (Cs0.1FA0.9)Pb(I0.9Br0.1)3 3D perovskites to form 2D/3D perovskite structure, which achieve high‐quality perovskite films with better crystallization and morphology. The optimal 2D/3D perovskite solar cells (PSCs) with 5% CEA+ display a power conversion efficiency (PCE) as high as 20.08% under 1 sun irradiation. Because of the notable hydrophobicity of alkylammonium cations with halogen functional groups and the formed 2D/3D perovskite structure, the optimal PSCs exhibit superior moisture resistance and retain 92% initial PCE after aging at 50 ± 5% relative humidity for 2400 h. This work opens up a new direction for the design of new‐type 2D/3D PSCs with improved performance by employing proper alkylammonium salts with different functional groups.  相似文献   

5.
Tin‐based perovskites have exhibited high potential for efficient photovoltaics application due to their outstanding optoelectrical properties. However, the extremely undesired instabilities significantly hinders their development and further commercialization process. A novel tin‐based reduced‐dimensional (quasi‐2D) perovskites is reported here by using 5‐ammoniumvaleric acid (5‐AVA+) as the organic spacer. It is demonstrated that by introducing appropriate amount of ammonium chloride (NH4Cl) as additive, highly vertically oriented tin‐based quasi‐2D perovskite films are obtained, which is proved through the grazing incidence wide‐angle X‐ray scattering characterization. In particular, this approach is confirmed to be a universal method to deliver highly vertically oriented tin‐based quasi‐2D perovskites with various spacers. The highly ordered vertically oriented perovskite films significantly improve the charge collection efficiency between two electrodes. With the optimized NH4Cl concentration, the solar cells employing quasi‐2D perovskite, AVA2FAn?1SnnI3n+1 (<n> = 5), as light absorbers deliver a power conversion efficiency up to 8.71%. The work paves the way for further employing highly vertically oriented tin‐based quasi‐2D perovskite films for highly efficient and stable photovoltaics.  相似文献   

6.
The efficiency of more than 25% in organic-inorganic hybrid perovskite solar cells has made them very attractive in the pursuit of cheaper alternatives to Si-based devices. However, the stability of the perovskite solar cells was challenging, given their high susceptibility to moisture. Very few reports have emerged in this regard that investigated the influence of introducing large cations into a triple cation perovskite (TC-PVS), with several studies limited to single and dual cation perovskites. Further, the crystallization of TC-PVS on a polymer surface such as PEDOT is not straightforward, and their inclusion in inverted solar cell devices was limited. In this work, we investigated the impact of incorporating Phenyl ethyl ammonium cation into FAMACs triple cation composition. We demonstrated improvements in the crystallinity and more uniform coverage with little to no pinholes and smooth morphology for an optimum PEA amount of 1.67% in the precursor solution. The superior morphology, along with a passivation effect from a quasi 2D phase, led to increased photoluminescence and minority carrier lifetimes. Corresponding inverted photovoltaic devices prepared with PEA showed increased open-circuit voltage from 0.89 V for a control sample to 0.95 V for 1.67% PEA and 0.98 V for 5% PEA, doped devices in an inverted configuration. The efficiency, as a result, increased from 11.27% for a control device to 14.85% for a 1.67% PEA doped device. Further, PEA doped devices showed improved operational and thermal stability attributed to the higher moisture tolerance and light-soaking ability of the PEA doped TC-PVS compared to the undoped TC-PVS.  相似文献   

7.
Perovskite materials serve as promising candidates for display and lighting due to their excellent optical properties, including tunable bandgaps and efficient luminescence. However, their efficiency and stability must be improved for further application. In this work, quasi‐two‐dimensional (quasi‐2D) perovskites embedded in different polymers are prepared by inkjet printing to construct any luminescent patterns/pictures on the polymer substrates. The optimized quantum yield reaches over 65% by polyvinyl‐chloride‐based quasi‐2D perovskite composites. In addition, as‐fabricated perovskite?polymer composites with patterns show excellent resistance to abrasion, moisture, light irradiation, and chemical erosion by various solvents. Both quantum yield and lifetime are superior to those reported to date. These achievements are attributed to the introduction of the PEA+ cations to improve the luminance and stability of perovskite. This patterned composite can be useful for color‐conversion films with low cost and large‐scale fabrication.  相似文献   

8.
Knowledge of the mechanism of formation, orientation, and location of phases inside thin perovskite films is essential to optimize their optoelectronic properties. Among the most promising, low toxicity, lead‐free perovskites, the tin‐based ones are receiving much attention. Here, an extensive in situ and ex situ structural study is performed on the mechanism of crystallization from solution of 3D formamidinium tin iodide (FASnI3), 2D phenylethylammonium tin iodide (PEA2SnI4), and hybrid PEA2FAn?1SnnI3n+1 Ruddlesden–Popper perovskites. Addition of small amounts of low‐dimensional component promotes oriented 3D‐like crystallite growth in the top part of the film, together with an aligned quasi‐2D bottom‐rich phase. The sporadic bulk nucleation occurring in the pure 3D system is negligible in the pure 2D and in the hybrid systems with sufficiently high PEA content, where only surface crystallization occurs. Moreover, tin‐based perovskites form through a direct conversion of a disordered precursor phase without forming ordered solvated intermediates and thus without the need of thermal annealing steps. The findings are used to explain the device performances over a wide range of composition and shed light onto the mechanism of the formation of one of the most promising Sn‐based perovskites, providing opportunities to further improve the performances of these interesting Pb‐free materials.  相似文献   

9.
Layered halide perovskites have recently shown extraordinary potential for low‐cost solution‐processable optoelectronic applications because of their superior moisture stability over their 3D counterparts. However, few studies have investigated the effect of light on layered hybrid perovskites. Here, the mechanically exfoliated nanoflakes of the 2D perovskite (PEA)2PbI4 (PEA, 2‐phenylethylammonium) are used as a model to investigate their intrinsic photostability. The light‐induced degradation of the flakes is investigated by using in situ techniques including confocal laser scanning microscopy, wide‐field fluorescence microscopy, and atomic force microscopy. Under resonant photoexcitation, (PEA)2PbI4 degrades to PbI2. It is clearly shown that this process is initiated at the crystal edges and from the surface. As a consequence, the photoluminescence of (PEA)2PbI4 is progressively quenched by surface traps. Importantly, the light‐induced degradation can be suppressed by encapsulation using hexagonal boron nitride (hBN) flakes and/or polycarbonates. This report sheds light on a specific mechanism of light‐induced degradation in layered perovskites and proposes a new encapsulation method to improve their photostability.  相似文献   

10.
The cost‐effective processability and high efficiency of the organic–inorganic metal halide perovskite solar cells (PSCs) have shown tremendous potential to intervene positively in the generation of clean energy. However, prior to an industrial scale‐up process, there are certain critical issues such as the lack of stability against over moisture, light, and heat, which have to be resolved. One of the several proposed strategies to improve the stability that has lately emerged is the development of lower‐dimensional (2D) perovskite structures derived from the Ruddlesden–Popper (RP) phases. The excellent stability under ambient conditions shown by 2D RP phase perovskites has made the scalability expectations burgeon since it is one of the most credible paths toward stable PSCs. In this review, the 2D/3D mixed system for photovoltaics (PVs) is elaborately discussed with the focus on the crystal structure, optoelectronic properties, charge carrier dynamics, and their impact on the photovoltaic performances. Finally, some of the further challenges are highlighted while outlining the perspectives of 2D/3D perovskites for high‐efficiency stable solar cells.  相似文献   

11.
Interfacial ligand passivation engineering has recently been recognized as a promising avenue, contributing simultaneously to the optoelectronic characteristics and moisture/operation tolerance of perovskite solar cells. To further achieve a win‐win situation of both performance and stability, an innovative conjugated aniline modifier (3‐phenyl‐2‐propen‐1‐amine; PPEA) is explored to moderately tailor organolead halide perovskites films. Here, the conjugated PPEA presents both “quasi‐coplanar” rigid geometrical configuration and distinct electron delocalization characteristics. After a moderate treatment, a stronger dipole capping layer can be formed at the perovskite/transporting interface to achieve favorable banding alignment, thus enlarging the built‐in potential and promoting charge extraction. Meanwhile, a conjugated cation coordinated to the surface of the perovskite grains/units can form preferably ordered overlapping, not only passivating the surface defects but also providing a fast path for charge exchange. Benefiting from this, a ≈21% efficiency of the PPEA‐modified solar cell can be obtained, accompanied by long‐term stability (maintaining 90.2% of initial power conversion efficiency after 1000 h testing, 25 °C, and 40 ± 10 humidity). This innovative conjugated molecule “bridge” can also perform on a larger scale, with a performance of 18.43% at an area of 1.96 cm2.  相似文献   

12.
Composition engineering is a particularly simple and effective approach especially using mixed cations and halide anions to optimize the morphology, crystallinity, and light absorption of perovskite films. However, there are very few reports on the use of anion substitutions to develop uniform and highly crystalline perovskite films with large grain size and reduced defects. Here, the first report of employing tetrafluoroborate (BF4?) anion substitutions to improve the properties of (FA = formamidinium, MA = methylammonium (FAPbI3)0.83(MAPbBr3)0.17) perovskite films is demonstrated. The BF4? can be successfully incorporated into a mixed‐ion perovskite crystal frame, leading to lattice relaxation and a longer photoluminescence lifetime, higher recombination resistance, and 1–2 orders magnitude lower trap density in prepared perovskite films and derived solar cells. These advantages benefit the performance of perovskite solar cells (PVSCs), resulting in an improved power conversion efficiency (PCE) of 20.16% from 17.55% due to enhanced open‐circuit voltage (VOC) and fill factor. This is the highest PCE for BF4? anion substituted lead halide PVSCs reported to date. This work provides insight for further exploration of anion substitutions in perovskites to enhance the performance of PVSCs and other optoelectronic devices.  相似文献   

13.
3D organic–inorganic lead halide perovskites have shown great potential in efficient photovoltaic devices. However, the low stability of the 3D perovskite layer and random arrangement of the perovskite crystals hinder its commercialization road. Herein, a highly oriented 2D@3D ((AVA)2PbI4@MAPbI3) perovskite structure combining the advantages of both 2D and 3D perovskite is fabricated through an in situ route. The highest power conversion efficiency (PCE) of 18.0% is observed from a 2D@3D perovskite solar cell (PSC), and it also shows significantly enhanced device stability under both inert (90% of initial PCE for 32 d) and ambient conditions (72% of initial PCE for 20 d) without encapsulation. The high efficiency of 18.0% and nearly twofold improvement of device stability in ambient compared with pure 3D PSCs confirm that such 2D@3D perovskite structure is an effective strategy for high performance and increasing stability and thus will enable the timely commercialization of PSCs.  相似文献   

14.
Perovskite solar cells based on organic-inorganic hybrid perovskite materials have become a research hotspot in photovoltaics field due to their outstanding power conversion efficiency (PCE)[1].Nonetheless, the organic cations are volatile and have rotation freedom, which is not good for photoand thermal-stability of the devices.Fortunately, these issues can be solved by all-inorganic perovskites, which consist of Cs, Pb and I (or Br)[2, 3].Moreover, the all-inorganic perovskites, such as CsPbl3, are excellent candidates as top-cell absorbers in tandem solar cells because of their suitable bandgaps and high stability.All-inorganic perovskites were first used as light absorbers in solar cells in 2015[4, 5].All-inorganic perovskite solar cells experienced rapid development in last few years, and the PCE reaches 20.4% at the end of 2020[6].Most recently, Meng et al.pushed the PCE to >21.0% (unpublished).Despite these advances, we should recognize that there still remains a big gap between the PCEs for all-inorganic perovskite solar cells and hybrid perovskite solar cells (Fig.1(a))[7, 8].The PCE for hybrid cells has reached 80% of the theoretical limit, while the PCE for all-inorganic cells is still below 70% of the theoretical limit[9].A detailed analysis on performance parameters of these cells suggests that the PCE for all-inorganic cells is mainly limited by the open-circuit voltage (Voc) and fill factor (FF) (Fig.1(b)).In solar cells, these two parameters correlate to non-radiative charge loss caused by defects[10].Therefore, defect engineering is the most critical approach for achieving higher PCE for all-inorganic perovskite solar cells.  相似文献   

15.
Efficient organic–inorganic metal halide perovskite absorbers have gained tremendous research interest in the past decade due to their super optoelectronic properties and defect tolerance. Lead (Pb) halide perovskites enable highly efficient perovskite solar cells (PSCs) with a record power conversion efficiency (PCE) of over 23%. However, the energy bandgaps of Pb halide perovskites are larger than the optimal bandgap for single junction solar cells, governed by the Shockley–Queisser (SQ) radiative limit. Mixed tin (Sn)‐Pb halide perovskites have drawn significant attention, since their bandgap can be tuned to below 1.2 eV, which opens a door for fabricating all‐perovskite tandem solar cells that can break the SQ radiative limit. This review summarizes the development of low‐bandgap mixed Sn‐Pb PSCs and their applications in all‐perovskite tandem solar cells. Its aim is to facilitate the development of new approaches to achieve high efficiency low‐bandgap single‐junction mixed Sn‐Pb PSCs and all‐perovskite tandem solar cells.  相似文献   

16.
The mixed halide perovskites have become famous for their outstanding photoelectric conversion efficiency among new‐generation solar cells. Unfortunately, for perovskites, little effort is focused on stress engineering, which should be emphasized for highly efficient solar cells like GaAs. Herein, polystyrene (PS) is introduced into the perovskite solar cells as the buffer layer between the SnO2 and perovskite, which can release the residual stress in the perovskite during annealing because of its low glass transition temperature. The stress‐free perovskite has less recombination, larger lattices, and a lower ion migration tendency, which significantly improves the cell's efficiency and device stability. Furthermore, the so‐called inner‐encapsulated perovskite solar cells are fabricated with another PS capping layer on the top of perovskite. As high as a 21.89% photoelectric conversion efficiency (PCE) with a steady‐state PCE of 21.5% is achieved, suggesting that the stress‐free cell can retain almost 97% of its initial efficiency after 5 days of “day cycle” stability testing.  相似文献   

17.
Lead halide perovskites are at the forefront of optoelectronic materials due to their high absorption coefficient,tunable bandgap,long carrier diffusion length,and small exciton binding energy[1?3],yielding high-performance optoelectronic devices.  相似文献   

18.
2D tin-based perovskites have gained considerable attention for use in diverse optoelectronic applications, such as solar cells, lasers, and thin-film transistors (TFTs), owing to their good stability and optoelectronic properties. However, their intrinsic charge-transport properties are limited, and the insulating bulky organic ligands hinder the achievement of high-mobility electronics. Blending 3D counterparts into 2D perovskites to form 2D/3D hybrid structures is a synergistic approach that combine the high mobility and stability of 3D and 2D perovskites, respectively. In this study, reliable p-channel 2D/3D tin-based hybrid perovskite TFTs comprising 3D formamidinium tin iodide (FASnI3) and 2D fluorinated 4-fluoro-phenethylammonium tin iodide ((4-FPEA)2SnI4) are reported. The optimized FPEA-incorporated TFTs show a high hole mobility of 12 cm2 V−1 s−1, an on/off current ratio of over 108, and a subthreshold swing of 0.09 V dec−1 with negligible hysteresis. This excellent p-type characteristic is compatible with n-type metal-oxide TFT for constructing complementary electronics. Two procedures of antisolvent engineering and device patterning are further proposed to address the key concern of low-performance reproducibility of perovskite TFTs. This study provides an alternative A-cation engineering method for achieving high-performance and reliable tin-halide perovskite electronics.  相似文献   

19.
With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A?1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices.  相似文献   

20.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号