首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The blossoming of organic solar cells (OSCs) has triggered enormous commercial applications, due to their high‐efficiency, light weight, and flexibility. However, the lab‐to‐manufacturing translation of the praisable performance from lab‐scale devices to industrial‐scale modules is still the Achilles' heel of OSCs. In fact, it is urgent to explore the mechanism of morphological evolution in the bulk heterojunction (BHJ) with different coating/printing methods. Here, a general approach to upscale flexible organic photovoltaics to module scale without obvious efficiency loss is demonstrated. The shear impulse during the coating/printing process is first applied to control the morphology evolution of the BHJ layer for both fullerene and nonfullerene acceptor systems. A quantitative transformation factor of shear impulse between slot‐die printing and spin‐coating is detected. Compelling results of morphological evolution, molecular stacking, and coarse‐grained molecular simulation verify the validity of the impulse translation. Accordingly, the efficiency of flexible devices via slot‐die printing achieves 9.10% for PTB7‐Th:PC71BM and 9.77% for PBDB‐T:ITIC based on 1.04 cm2 . Furthermore, 15 cm2 flexible modules with effective efficiency up to 7.58% (PTB7‐Th:PC71BM) and 8.90% (PBDB‐T:ITIC) are demonstrated with satisfying mechanical flexibility and operating stability. More importantly, this work outlines the shear impulse translation for organic printing electronics.  相似文献   

4.
All‐solution‐processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost‐effective fabrication environment for the devices. Herein, an all‐solution‐processed flexible organic solar cell (OSC) using poly(3,4‐ethylenedioxythiophene):poly‐(styrenesulfonate) electrodes is reported. The all‐solution‐processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal‐oxide‐free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high‐performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high‐performance all‐solution‐processed flexible OSCs, which is important for the development of printing, blading, and roll‐to‐roll technologies.  相似文献   

5.
柔性色素增感太阳能电池的研究进展   总被引:2,自引:0,他引:2  
介绍了柔性色素增感太阳能电池的结构、原理、特点及现状,并对各个组成部分:柔性基板(PET和PEN)、透明导电薄膜及电极材料(TiO2和ZnO)进行了综述,重点介绍了纳米TiO2多孔薄膜电极材料的各种低温制备方法.比较各种低温TiO2薄膜制备方法得出胶体涂膜直接低温烧结法较好.该方法简单便捷,效率较高,适合产业化滚筒生产.  相似文献   

6.
何云龙  沈沪江  王炜  袁慧慧 《材料导报》2018,32(21):3677-3688
柔性太阳能电池具有轻便、可弯曲的优点,可用于可穿戴设备等器件的即时充电,具有广阔的应用前景,受到持续广泛的关注。柔性太阳能电池制备中的关键在于基材以及与之相关的电极材料的制备。本文综述了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池近几年的发展情况,着重介绍了柔性染料敏化太阳能电池光阳极、对电极以及柔性钙钛矿太阳能电池的底电极和电子传输层。结果发现高温烧结目前仍是制备高效染料敏化太阳能电池光阳极不可避免的方法,而对电极则不受这一限制并且已经有多种材料的效率超过了高温烧结的铂。柔性钙钛矿太阳能电池的研究重点是用其他材料代替底电极中柔性较差的ITO以及高温烧结的电子传输材料TiO2,并且都取得显著成效。在此基础上,展望了柔性染料敏化太阳能电池和柔性钙钛矿太阳能电池未来的发展方向。  相似文献   

7.
8.
Transparent conducting electrodes (TCEs) are considered to be an essential structural component of flexible organic solar cells (FOSCs). Silver nanowire (AgNW) electrodes are widely used as TCEs owing to their excellent electrical and optical properties. The fabrication of AgNW electrodes has faced challenges in terms of forming large uniform interconnected networks so that high conductivity and reproducibility can be achieved. In this study, a simple method for creating an intimate contact between AgNWs that uses cold isostatic pressing (CIP) is demonstrated. This method increases the conductivity of the AgNW electrodes, which enables the fabrication of high‐efficiency inverted FOSCs that have a power conversion efficiency of 8.75% on flexible polyethylene terephthalate with no short circuiting occurring as the CIP process minimizes the surface roughness of the AgNW electrode. This allows to achieve 100% manufacturing yield of FOSCs. Furthermore, these highly efficient FOSCs are proven to only be 2.4% less efficient even for an extreme bending radius of R ≈ 1.5 mm, compared with initial efficiency.  相似文献   

9.
10.
11.
12.
柔性染料敏化太阳能电池研究进展   总被引:1,自引:0,他引:1  
从柔性基底的选择、低温法制备纳米晶TiO2薄膜、柔性对电极等几个方面介绍了柔性DSSC的研究进展,重点评述了纳米晶TiO2薄膜低温制备技术,如低温烧结法、微波烧结法、水热法、紫外光照射法和加压法等的优缺点,并展望了柔性DSSC未来的研究方向.  相似文献   

13.
Perovskite solar cells (PSCs) have attracted unprecedented attention due to their rapidly rising photoelectric conversion efficiency (PCE). In order to further improve the PCE of PSCs, new possible optimization path needs to be found. Here, quasi‐heteroface PSCs (QHF‐PSCs) is designed by a double‐layer perovskite film. Such brand new PSCs have good carrier separation capabilities, effectively suppress the nonradiative recombination of the PSCs, and thus greatly improve the open‐circuit voltage and PCE. The root cause of the performance improvement is the benefit from the additional built‐in electric field, which is confirmed by measuring the external quantum efficiency under applied electric field and Kelvin probe force microscope. Meanwhile, an intermediate band gap perovskite layer can be obtained simply by combining a wide band gap perovskite layer with a narrow band gap perovskite layer. Tunability of the band gap is obtained by varying the film thicknesses of the narrow and wide band gap layers. This phenomenon is quite different from traditional inorganic solar cells, whose band gap is determined only by the narrowest band gap layer. It is believed that these QHF‐PSCs will be an effective strategy to further enhance PCE in PSCs and provide basis to further understand and develop the perovskite materials platform.  相似文献   

14.
近年来,柔性钙钛矿太阳能电池由于具有质量轻、成本低、形状可塑、适用性广等优点,成为了太阳能电池领域炙手可热的研究课题。目前,该类柔性电池的最高光电转换效率已超过16%。本文针对柔性钙钛矿太阳能电池的结构及其柔性衬底,介绍了其主要的研究方向和目前的研究进展,并探讨了柔性钙钛矿太阳能领域面临的主要问题与挑战,最后展望了柔性钙钛矿太阳能电池的发展。  相似文献   

15.
Solution‐processed bulk‐heterojunction solar cells have gained serious attention during the last few years and are becoming established as one of the future photovoltaic technologies for low‐cost power production. This article reviews the highlights of the last few years, and summarizes today's state‐of‐the‐art performance. An outlook is given on relevant future materials and technologies that have the potential to guide this young photovoltaic technology towards the magic 10% regime. A cost model supplements the technical discussions, with practical aspects any photovoltaic technology needs to fulfil, and answers to the question as to whether low module costs can compensate lower lifetimes and performances.  相似文献   

16.
17.
Flexible amorphous silicon (a‐Si:H) solar cells with high photoconversion efficiency (PCE) are demonstrated by embedding hexagonal pyramid nanostructures below a Ag/indium tin oxide (ITO) reflector. The nanostructures constructed by nanoimprint lithography using soft materials allow the top ITO electrode to spontaneously form parabolic nanostructures. Nanoimprint lithography using soft materials is simple, and is conducted at low temperature. The resulting structure has excellent durability under repeated bending, and thus, flexible nanostructures are successfully constructed on flexible a‐Si:H solar cells on plastic film. The nanoimprinted pyramid back reflector provides a high angular light scattering with haze reflectance >98% throughout the visible spectrum. The spontaneously formed parabolic nanostructure on the top surface of the a‐Si:H solar cells both reduces reflection and scatters incident light into the absorber layer, thereby elongating the optical path length. As a result, the nanopatterned a‐Si:H solar cells, fabricated on polyethersulfone (PES) film, exhibit excellent mechanical flexibility and PCE increased by 48% compared with devices on a flat substrate.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号