首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bis‐tridentate Ir(III) metal complexes are expected to show great potential in organic light‐emitting diode (OLED) applications due to the anticipated, superb chemical and photochemical stability. Unfortunately, their exploitation has long been hampered by lack of adequate methodology and with inferior synthetic yields. This hurdle can be overcome by design of the first homoleptic, bis‐tridentate Ir(III) complex [Ir(pzpyph)(pzHpyph)] ( 1 ), for which the abbreviation (pzpyph)H (or pzHpyph) stands for the parent 2‐pyrazolyl‐6‐phenyl pyridine chelate. After that, methylation and double methylation of 1 afford the charge‐neutral Ir(III) complex [Ir(pzpyph)(pzMepyph)] ( 2 ) and cationic complex [Ir(pzMepyph)2][PF6] ( 3 ), while deprotonation of 1 gives formation of anionic [Ir(pzpyph)2][NBu4] ( 4 ), all in high yields. These bis‐tridentate Ir(III) complexes 2 – 4 are highly emitted in solution and solid states, while the charge‐neutral 2 and corresponding t ‐butyl substituted derivative [Ir(pzpyBuph)(pzMepyBuph)] ( 5 ) exhibit superior photostability versus the tris‐bidentate references [Ir(ppy)2(acac)] and [Ir(ppy)3] in toluene under argon, making them ideal OLED emitters. For the track record, phosphor 5 gives very small efficiency roll‐off and excellent overall efficiencies of 20.7%, 66.8 cd A?1, and 52.8 lm W?1 at high brightness of 1000 cd m?2. These results are expected to inspire further studies on the bis‐tridentate Ir(III) complexes, which are judged to be more stable than their tris‐bidentate counterparts from the entropic point of view.  相似文献   

2.
A new class of deep blue electrophosphorescent Pt(II) emitters have been designed and synthesized. This new class of deep blue Pt(II) emitters employ tetradentate and macrocyclic chelate chromophores to constrain the Pt(II) molecules in a non‐distorted flat geometry in both the ground state and the excited state. The new deep blue emitters do not produce excimer emission, with emission quantum efficiency as high as 95% in 10% doped PMMA (poly(methyl methacrylate) films, and excellent UV stability, compared to the corresponding bidentate Pt(II) emitters. The macrocyclic tetradentate chelate Pt(II) compounds are the first examples of fully sterically constrained deep blue Pt(II) emitters that do not display structural distortion and have a higher thermal stability and a higher emission quantum efficiency than the corresponding non‐macrocyclic tetradentate Pt(II) analogues. A computational study supports that the macrocylic Pt(II) compounds are structurally more stable than the tetradentate Pt(II) molecules. Bright and efficient deep blue electrophosphorescent devices using a macrocyclic Pt(II) emitter have been successfully fabricated with a maximum brightness of 10 680 cd m?2, maximum external quantum efficiency of 15.4% (at 490 cd m?2), and Commission Internationale de L'Eclairage (1931) coordinates (x + y ) of less than or near 0.30, respectively.  相似文献   

3.
A new series of charge‐neutral Ru(II ) pyridyl and isoquinoline pyrazolate complexes, [Ru(bppz)2(PPh2Me)2] (bbpz: 3‐tert‐butyl‐5‐pyridyl pyrazolate) ( 1 ), [Ru(fppz)2(PPh2Me)2] (fppz: 3‐trifluoromethyl‐5‐pyridyl pyrazolate) ( 2 ), [Ru(ibpz)2(PPhMe2)2] (ibpz: 3‐tert‐butyl‐5‐(1‐isoquinolyl) pyrazolate) ( 3 ), [Ru(ibpz)2(PPh2Me)2] ( 4 ), [Ru(ifpz)2(PPh2Me)2] (ifpz: 3‐trifluoromethyl‐5‐(1‐isoquinolyl) pyrazolate) ( 5 ), [Ru(ibpz)2(dpp?)] (dpp? represents cis‐1,2‐bis‐(diphenylphosphino)ethene) ( 6 ), and [Ru(ifpz)2(dpp?)] ( 7 ), have been synthesized, and their structural, electrochemical, and photophysical properties have been characterized. A comprehensive time‐dependant density functional theory (TDDFT) approach has been used to assign the observed electronic transitions to specific frontier orbital configurations. A multilayer organic light‐emitting device (OLED) using 24 wt % of 5 as the dopant emitter in a 4,4′‐N,N′‐dicarbazolyl‐1,1′‐biphenyl (CBP) host with 4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB) as the hole‐transport layer exhibits saturated red emission with an external quantum efficiency (EQE) of 5.10 %, luminous efficiency of 5.74 cd A–1, and power efficiency of 2.62 lm W–1. The incorporation of a thin layer of poly(styrene sulfonate)‐doped poly(3,4‐ethylenedioxythiophene) (PEDOT) between indium tin oxide (ITO) and NPB gave anoptimized device with an EQE of 7.03 %, luminous efficiency of 8.02 cd A–1, and power efficiency of 2.74 lm W–1 at 20 mA cm–2. These values represent a breakthrough in the field of OLEDs using less expensive Ru(II ) metal complexes. The nonionic nature of the complexes as well as their high emission quantum efficiencies and short radiative lifetimes are believed to be the key factors enabling this unprecedented achievement. The prospects for color tuning based on Ru(II ) complexes are also discussed in light of some theoretical calculations.  相似文献   

4.
A novel blue-light organic electroluminescence material (OEM) derived from 8-hydroxyquinoline lithium (Liq), bis[(8-hydroxyquinolin)lithium·8-hydroxyquinolin] sodium ([Liq·q?]2·2Na+), was synthesized and investigated. For stereo molecular structure and presence of sodium ions, [Liq·q?]2·2Na+ exhibits higher quantum yield and longer fluorescence lifetime than Liq. When used as light-emitting layer in organic light-emitting diode (OLED), [Liq·q?]2·2Na+ shows the maximum emission peak at 489 nm in electroluminescence spectra and emits bluer light with higher current efficiency stability than Liq. Moreover, [Liq·q?]2·2Na+ exhibits excellent thermal stability and film formability.  相似文献   

5.
2‐(2‐tert‐Butyl‐6‐((E)‐2‐(2,6,6‐trimethyl‐2,4,5,6‐tetrahydro‐1H‐pyrrolo[3,2,1‐ij]quinolin‐8‐yl)vinyl)‐4H‐pyran‐4‐ylidene)malononitrile (DCQTB) is designed and synthesized in high yield for application as the red‐light‐emitting dopant in organic light‐emitting diodes (OLEDs). Compared with 4‐(dicyanomethylene)‐2‐tert‐butyl‐6‐(1,1,7,7,‐tetramethyljulolidyl‐9‐enyl)‐4H‐pyran (DCJTB), one of the most efficient red‐emitting dopants, DCQTB exhibits red‐shifted fluorescence but blue‐shifted absorption. The unique characteristics of DCQTB with respect to DCJTB are utilized to achieve a red OLED with improved color purity and luminous efficiency. As a result, the device that uses DCQTB as dopant, with the configuration: indium tin oxide (ITO)/N,N′‐bis(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4′‐diamine (NPB; 60 nm)/tris(8‐quinolinolato) aluminum (Alq3):dopant (2.3 wt %) (7 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 12 nm)/Alq3(45 nm)/LiF(0.3 nm):Al (300 nm), shows a larger maximum luminance (Lmax = 6021 cd m–2 at 17 V), higher maximum efficiency (ηmax = 4.41 cd A–1 at 11.5 V (235.5 cd m–2)), and better chromaticity coordinates (Commission Internationale de l'Eclairage, CIE, (x,y) = (0.65,0.35)) than a DCJTB‐based device with the same structure (Lmax = 3453 cd m–2 at 15.5 V, ηmax = 3.01 cd A–1 at 10 V (17.69 cd m–2), and CIE (x,y) = (0.62,0.38)). The possible reasons for the red‐shifted emission but blue‐shifted absorption of DCQTB relative to DCJTB are also discussed.  相似文献   

6.
Electrooxidation of the nickel dithiolene complex [Ni(F2pdt)2]–· (F2pdt2‐: 6,6‐difluoro‐6,7‐dihydro‐5H‐[1,4]dithiepine‐2,3‐dithiolato) affords the corresponding neutral complex [Ni(F2pdt)2]0 whose layered structure is highly reminiscent, albeit not isostructural, of that of the isosteric fluorinated bis(propylenedithio)tetrathiafulvalene and characterized by a segregation of the fluorinated moieties into fluorous bilayers. The gold neutral complex [Au(F2pdt)2]·, which is isostructural with the fluorinated bis(propylenedithio)tetrathiafulvalene, was prepared by electrocrystallization of the [n‐Bu4N][Au(F2pdt)2] salt. [Au(F2‐pdt)2]· is a semiconductor with high room temperature conductivity. The origin of this semiconducting behavior as well as possible guidelines in order to realize metallic conductivity in gold dithiolene neutral molecular solids are discussed.  相似文献   

7.
By attaching a bulky, inductively electron‐withdrawing trifluoromethyl (CF3) group on the pyridyl ring of the rigid 2‐[3‐ (N‐phenylcarbazolyl)]pyridine cyclometalated ligand, we successfully synthesized a new heteroleptic orange‐emitting phosphorescent iridium(III) complex [Ir( L 1 )2(acac)] 1 ( HL 1 = 5‐trifluoromethyl‐2‐[3‐(N‐phenylcarbazolyl)]pyridine, Hacac = acetylacetone) in good yield. The structural and electronic properties of 1 were examined by X‐ray crystallography and time‐dependent DFT calculations. The influence of CF3 substituents on the optical, electrochemical and electroluminescence (EL) properties of 1 were studied. We note that incorporation of the carbazolyl unit facilitates the hole‐transporting ability of the complex, and more importantly, attachment of CF3 group provides an access to a highly efficient electrophosphor for the fabrication of orange phosphorescent organic light‐emitting diodes (OLEDs) with outstanding device performance. These orange OLEDs can produce a maximum current efficiency of ~40 cd A?1, corresponding to an external quantum efficiency of ~12% ph/el (photons per electron) and a power efficiency of ~24 lm W?1. Remarkably, high‐performance simple two‐element white OLEDs (WOLEDs) with excellent color stability can be fabricated using an orange triplet‐harvesting emitter 1 in conjunction with a blue singlet‐harvesting emitter. By using such a new system where the host singlet is resonant with the blue fluorophore singlet state and the host triplet is resonant with the orange phosphor triplet level, this white light‐emitting structure can achieve peak EL efficiencies of 26.6 cd A?1 and 13.5 lm W?1 that are generally superior to other two‐element all‐fluorophore or all‐phosphor OLED counterparts in terms of both color stability and emission efficiency.  相似文献   

8.
Strong intermolecular interactions usually result in decreases in solubility and fluorescence efficiency of organic molecules. Therefore, amorphous materials are highly pursued when designing solution‐processable, electroluminescent organic molecules. In this paper, a non‐planar binaphthyl moiety is presented as a way of reducing intermolecular interactions and four binaphthyl‐containing molecules ( BNCM s): green‐emitting BBB and TBT as well as red‐emitting BTBTB and TBBBT , are designed and synthesized. The photophysical and electrochemical properties of the molecules are systematically investigated and it is found that TBT , TBBBT , and BTBTB solutions show high photoluminescence (PL) quantum efficiencies of 0.41, 0.54, and 0.48, respectively. Based on the good solubility and amorphous film‐forming ability of the synthesized BNCM s, double‐layer structured organic light‐emitting diodes (OLEDs) with BNCM s as emitting layer and poly(N‐vinylcarbazole) (PVK) or a blend of poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)benzidine] and PVK as hole‐transporting layer are fabricated by a simple solution spin‐coating procedure. Amongst those, the BTBTB based OLED, for example, reaches a high maximum luminance of 8315 cd · m−2 and a maximum luminous efficiency of 1.95 cd · A−1 at a low turn‐on voltage of 2.2 V. This is one of the best performances of a spin‐coated OLED reported so far. In addition, by doping the green and red BNCM s into a blue‐emitting host material poly(9,9‐dioctylfluorene‐2,7‐diyl) high performance white light‐emitting diodes with pure white light emission and a maximum luminance of 4000 cd · m−2 are realized.  相似文献   

9.
Highly efficient and stable blue phosphorescent organic light‐emitting diodes are achieved by employing a step‐wise graded doping of platinum(II) 9‐(pyridin‐2‐yl)‐2‐(9‐(pyridin‐2‐yl)‐9H‐carbazol‐2‐yloxy)‐9H‐carbazole (PtNON) in a device setting. A device employing PtNON demonstrates a high peak external quantum efficiency (EQE) of 17.4% with an estimated LT70 lifetime of over 1330 h at a brightness of 1000 cd m?2. PtNON is then investigated as a “triplet sensitizer” in an alternating donor–acceptor doped emissive layer to further improve the device emission color purity by carefully managing an efficient Förster resonant energy transfer from PtNON to 2,5,8,11‐tetra‐tert‐butylperylene as a selected acceptor material. Thus, such OLED devices demonstrate an EQE of 16.9% with color coordinates of (0.16, 0.25) and an estimated luminance (LT70) lifetime of 628 h at a high brightness of 1000 cd m?2.  相似文献   

10.
In this paper, we demonstrated the changes of electrical and optical characteristics of a phosphorescent organic light-emitting device (OLED) with tris(phenylpyridine)iridium Ir(ppy)3 thin layer (4 nm) slightly codoped (1%) inside the emitting layer (EML) close to the cathode side. Such a thin layer helped for electron injection and transport from the electron transporting layer into the EML, which reduced the driving voltage (0.40 V at 100 mA/cm2). Electroluminescence (EL) spectral shift at different driving voltage was observed in our blue OLED with [(4,6-di-fluoropheny)-pyridinato-N,C2′]picolinate (FIrpic) emitter, which came from the recombination zone shift. With the incorporation of thin-codoped Ir(ppy)3, such EL spectral shift was almost undetectable (color coordinate shift (0.000, 0.001) from 100 to 10,000 cd/m2), due to the compensation of Ir(ppy)3 emission at low driving voltage. Such a methodology can be applied to a white OLED which stabilized the EL spectrum and the color coordinates ((0.012, 0.002) from 100 to 10,000 cd/m2).  相似文献   

11.
Solution‐processed organic light‐emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) material as emitter have attracted much attention because of their low cost and high performance. However, exciton quench at the interface between the hole injection layer, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and emitting layer (EML) in devices can lead to low device performance. Here, a novel high triplet energy (2.89 eV) and crosslinkable hole‐transporting material grafted with oxetane groups, N,N‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy)hexyloxy)phenyl)‐3,5‐di(9H‐carbazol‐9‐yl)benzenamine (Oxe‐DCDPA)), as crosslinked hole transport layer (HTL) into the interface of PEDOT:PSS layer and EML is proposed for prevention of exciton quenching, and among the reported devices with single HTL in solution‐processed TADF‐OLED, the highest external quantum efficiency (EQE)/luminous efficiency (ηL) of 26.1%/94.8 cd A?1 and 24.0%/74.0 cd A?1 are achieved for green emission (DACT‐II as emitter) and bluish‐green emission (DMAC‐TRZ as emitter), respectively. Further improvement, using double HTLs, composed of N,N′‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy))‐hexylphenyl)‐N,N′‐diphenyl‐4,4′‐diamine with high hole mobility and Oxe‐DCDPA with high triplet energy, leads to the highest EQE/ηL of 30.8%/111.9 cd A?1 and 27.2%/83.8 cd A?1 for green emission and bluish‐green emission, respectively. These two devices show the high maximum brightness of 81 100 and 70 000 cd m?2, respectively.  相似文献   

12.
A new class of charge neutral, strongly luminescent cyclometalated platinum(II) complexes supported by dianionic tetradentate ligand are synthesized. One of these platinum(II) complexes, Y‐Pt , displays a high photoluminescence quantum yield of 86% and electroluminescence efficacy (ηpower) of up to 52 lm W?1, and is utilized as a yellow phosphorescent dopant in the fabrication of white organic light‐emitting devices (WOLEDs). WOLEDs based on conventional structures with yellow emission from Y‐Pt in combination with blue emission from bis(4,6‐difluorophenyl‐pyridinato‐N,C2′) (picolinate) iridium(III) (FIrpic) show a total ηpower of up to 31 lm W?1. A two‐fold increase in ηpower by utilizing a modified WOLED structure comprising of a composite blue host is realized. With this modified device structure, the total ηpower and driving voltage at a luminance of 1000 cd m?2 can be improved to 61 lm W?1 and 7.5 V (i.e., 10 V for control devices). The performance improvement is attributed to an effectively broaden exciton formation‐recombination zone and alleviation of localized exciton accumulation within the FIrpic‐doped composite host for reduced triplet‐triplet annihilation, yielding blue light‐emission with enhanced intensity. The modified device structure can also adopt a higher concentration of Y‐Pt towards its optimal value, leading to WOLEDs with high efficiency.  相似文献   

13.
Several substituted phenanthrolines (L = pyrazino[2,3‐f][1,10]phenanthroline (PyPhen), 2‐methylpyrazino[2,3‐f][1,10]phenanthroline (MPP), dipyrido[3,2‐a:2′,3′‐c]phenazine (DPPz), 11‐methyldipyrido[3,2‐a:2′,3′‐c]phenazine (MDPz), 11,12‐dimethyldipyrido[3,2‐a:2′,3′‐c]phenazine (DDPz), and benzo[i]dipyrido[3,2‐a:2,3‐c]phenazine (BDPz)) were successfully prepared and europium complexes Eu(TTA)3L (Eu‐L) based on these ligands were synthesized from EuCl3, 2‐thenoyltrifluoroacetone (TTA) and L in good yields. Irradiation at the absorption band between 320–390 nm of all these europium complexes, except Eu‐BDPz, in solution or in the solid state leads to the emission of a sharp red band at ~ 612 nm, a characteristic Eu3+ emission due to the transition 5D07F2. No emission from the ligands was found. The result indicates that complete energy transfer from the ligand to the center Eu3+ ion occurs for these europium complexes. In contrast, the photoluminescence spectrum of Eu‐BDPz exhibits a strong emission at around 550 nm from the coordinated BDPz ligand and a weak emission at 612 nm from the central europium ion. Incomplete energy transfer from the ligand to the central Eu3+ ion was observed for the first time. Several electroluminescent devices ( A – I ) using Eu‐PyPhen, Eu‐MPP, Eu‐DPPz, and Eu‐DDPz as dopant emitters with the device configuration: TPD or NPB (50 nm)/Eu:CBP (1.7–7 %, 30 nm)/BCP (20–30 nm)/Alq (25–35 nm) (where TPD: 4,4′‐bis[N‐(p‐tolyl)‐N‐phenylamino]biphenyl; NPB: 4,4′‐bis[1‐naphthylphenylamino]biphenyl; CBP: 4,4′‐N,N′‐dicarbazole biphenyl; BCP: 2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline; Alq: tris[8‐hydroxyquinoline]aluminum) were fabricated. Some of these devices emit saturated red light and are the only europium complex‐based devices that show a brightness of more than 1000 cd m–2.  相似文献   

14.
Organic light‐emitting devices (OLEDs) are expected to be adopted as the next generation of general lighting because they are more efficient than fluorescent tubes and are mercury‐free. The theoretical limit of operating voltage is generally believed to be equal to the energy gap, which corresponds to the energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) for the emitter molecule divided by the electron charge (e). Here, green OLEDs operating below a theoretical limit of the energy gap (Eg) voltage with high external quantum efficiency over 20% are demonstrated using fac‐tris(2‐phenylpyridine)iridium(III) with a peak emission wavelength of 523 nm, which is equivalent to a photon energy of 2.38 eV. An optimized OLED operates clearly below the theoretical limit of the Eg voltage at 2.38 V showing 100 cd m?2 at 2.25 V and 5000 cd m?2 at 2.95 V without any light outcoupling enhancement techniques.  相似文献   

15.
The oxidation of Fe(II) with dissolved molecular oxygen was studied in sulfuric acid solutions containing 0.2 mol . dm-3 FeSO4 at temperatures ranging from 343 to 363 K. In solutions of sulfuric acid above 0.4 mol . dm-3, the oxidation of Fe (II) was found to proceed through two parallel paths. In one path the reaction rate was proportional to both [Fe2+]2 and po2, exhibiting an activation energy of 51.6 . kJ mol-1. In another path the reaction rate was proportional to [Fe2+]2, [SO4-], and po2 with an activation energy of 144.6 kJ . mol-1. A reaction mechanism in which the SO4- ions play an important role was proposed for the oxidation of Fe(II). In dilute solutions of sulfuric acid below 0.4 mol . dm-3, the rate of the oxidation reaction was found to be proportional to both [Fe(II)]2 and Po2, and was also affected by [H+] and [SO2- 4]. The decrease in [H+] resulted in the increase of reaction rate. The discussion was further extended to the effect of Fe (III) on the oxidation reaction of Fe (II).  相似文献   

16.
New blue and blue‐green phosphorescent C^N chelate Pt(II) compounds that contain a dimesitylboryl‐functionalized phenyl‐1,2,3‐triazole ligand (Bptrz) are synthesized. The influence of three different ancillary ligands, namely acetylacetonato (acac), picolinate (pic) and pyridyl‐1,2,4‐triazolyl (pytrz), on phosphorescence quantum efficiency and excimer emission is examined. Pt(II) compounds with a p‐Bptrz ligand consistently emit a blue‐green color with an emission wavelength = 490–500 nm while those with a m‐Bptrz ligand emit a blue color with λem = 450–460 nm and a quantum efficiency as high as 0.97. In addition to the blue monomer emission peak, Pt(m‐Bptrz)(pytrz) compounds display an excimer emission peak at ~550 nm in a solid matrix whose intensity is dependent on the substituent group on pytrz and the doping concentration. As a result of the monomer and excimer emission, bright white phosphorescence is observed for several members of Pt(m‐Bptrz)(pytrz) compounds. Intramolecular CH···N hydrogen bonds are found to play an important role in the high stability and high phosphorescent quantum efficiency of Pt(m‐Bptrz)(pytrz) compounds. Single‐dopant blue and white electrophosphorescent devices using Pt(m‐Bptrz)(CF3‐pytrz‐Me) or Pt(m‐Bptrz)(t‐Bu‐pytrz‐Me) as the emitter are successfully fabricated. White electroluminesence devices with external quantum efficiency of 15.6% and CIE (xy) of 0.31, 0.44 are achieved.  相似文献   

17.
We report efficient single layer red, green, and blue (RGB) phosphorescent organic light-emitting diodes (OLEDs) using a “direct hole injection into and transport on triplet dopant” strategy. In particular, red dopant tris(1-phenylisoquinoline)iridium [Ir(piq)3], green dopant tris(2-phenylpyridine)iridium [Ir(ppy)3], and blue dopant bis(3,5-difluoro-2-(2-pyridyl)phenyl-(2-carboxypyridyl)iridium [FIrpic] were doped into an electron transporting 1,3,5-tris(N-phenylbenzimidazole-2-yl)benzene (TPBi) host, respectively, to fabricate RGB single layer devices with indium tin oxide (ITO) anode and LiF/Al cathode. It is found that the maximum current efficiencies of the devices are 3.7, 34.5, and 6.8 cd/A, respectively. Moreover, by inserting a pure dopant buffer layer between the ITO anode and the emission layer, the efficiencies are improved to 4.9, 43.3, and 9.8 cd/A, respectively. It is worth noting that the current efficiency of the green simplified device was as high as 34.6 cd/A, even when the luminance was increased to 1000 cd/m2 at an extremely low applied voltage of only 4.3 V. A simple accelerated aging test on the green device also shows the lifetime decay of the simplified device is better than that of a traditional multilayered one.  相似文献   

18.
Efficient blue‐, green‐, and red‐light‐emitting organic diodes are fabricated using binuclear platinum complexes as phosphorescent dopants. The series of complexes used here have pyrazolate bridging ligands and the general formula CNPt(μ‐pz)2PtCN (where CN = 2‐(4′,6′‐difluorophenyl)pyridinato‐N,C2′, pz = pyrazole ( 1 ), 3‐methyl‐5‐tert‐butylpyrazole ( 2 ), and 3,5‐bis(tert‐butyl)pyrazole ( 3 )). The Pt–Pt distance in the complexes, which decreases in the order 1 > 2 > 3 , solely determines the electroluminescence color of the organic light‐emitting diodes (OLEDs). Blue OLEDs fabricated using 8 % 1 doped into a 3,5‐bis(N‐carbazolyl)benzene (mCP) host have a quantum efficiency of 4.3 % at 120 Cd m–2, a brightness of 3900 Cd m–2 at 12 V, and Commission Internationale de L'Eclairage (CIE) coordinates of (0.11, 0.24). Green and red OLEDs fabricated with 2 and 3 , respectively, also give high quantum efficiencies (~ 6.7 %), with CIE coordinates of (0.31, 0.63) and (0.59, 0.46), respectively. The current‐density–voltage characteristics of devices made using dopants 2 and 3 indicate that hole trapping is enhanced by short Pt–Pt distances (< 3.1 Å). Blue electrophosphorescence is achieved by taking advantage of the binuclear molecular geometry in order to suppress dopant intermolecular interactions. No evidence of low‐energy emission from aggregate states is observed in OLEDs made with 50 % 1 doped into mCP. OLEDs made using 100 % 1 as an emissive layer display red luminescence, which is believed to originate from distorted complexes with compressed Pt–Pt separations located in defect sites within the neat film. White OLEDs are fabricated using 1 and 3 in three different device architectures, either with one or two dopants in dual emissive layers or both dopants in a single emissive layer. All the white OLEDs have high quantum efficiency (~ 5 %) and brightness (~ 600 Cd m–2 at 10 V).  相似文献   

19.
The electronic properties, carrier injection, and transport into poly(9,9‐dioctylfluorene) (PFO), PFO end‐capped with hole‐transporting moieties (HTM), PFO–HTM, and PFO end‐capped with electron‐transporting moieties (ETM), PFO–ETM, were investigated. The data demonstrate that charge injection and transport can be tuned by end‐capping with HTM and ETM, without significantly altering the electronic properties of the conjugated backbone. End‐capping with ETM resulted in more closely balanced charge injection and transport. Single‐layer electrophosphorescent light‐emitting diodes (LEDs), fabricated from PFO, PFO–HTM and PFO–ETM as hosts and tris[2,5‐bis‐2′‐(9′,9′‐dihexylfluorene)pyridine‐κ2NC3′]iridium(III ), Ir(HFP)3 as the guest, emitted red light with brightnesses of 2040 cd m–2, 1940 cd m–2 and 2490 cd m–2 at 290 mA cm–2 (16 V) and with luminance efficiencies of 1.4 cd A–1, 1.4 cd A–1 and 1.8 cd A–1 at 4.5 mA cm–2 for PFO, PFO–HTM, and PFO–ETM, respectively.  相似文献   

20.
A series of fluorene‐based oligomers with novel spiro‐annulated triarylamine structures, namely DFSTPA, TFSTPA, and TFSDTC, are synthesized by a Suzuki cross‐coupling reaction. The spiro‐configuration molecular structures lead to very high glass transition temperatures (197–253 °C) and weak intermolecular interactions, and consequently the structures retain good morphological stability and high fluorescence quantum efficiencies(0.69–0.98). This molecular design simultaneously solves the spectral stability problems and hole‐injection and transport issues for fluorene‐based blue‐light‐emitting materials. Simple double‐layer electroluminescence (EL) devices with a configuration of ITO/TFSTPA (device A) or TFSDTC (device B)/ TPBI/LiF/Al, where TFSTPA and TFSDTC serve as hole‐transporting blue‐light‐emitting materials, show a deep‐blue emission with a peak around 432 nm, and CIE coordinates of (0.17, 0.12) for TFSTPA and (0.16, 0.07) for TFSDTC, respectively, which are very close to the National Television System Committee (NTSC) standard for blue (0.15, 0.07). The maximum current efficiency/external quantum efficiencies are 1.63 cd A?1/1.6% for device A and 1.91 cd A?1/2.7% for device B, respectively. In addition, a device with the structure ITO/DFSTPA/Alq3/LiF/Al, where DFSTPA acts as both the hole‐injection and ‐transporting material, is shown to achieve a good performance, with a maximum luminance of 14 047 cd m?2, and a maximum current efficiency of 5.56 cd A?1. These values are significantly higher than those of devices based on commonly usedN,N′‐di(1‐naphthyl)‐N,N′‐diphenyl‐[1,1′‐biphenyl]‐4,4′‐diamine (NPB) as the hole‐transporting layer (11 738 cd m?2 and 3.97 cd A?1) under identical device conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号