首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microstructure of β‐FeSi2 nanoparticles grown using magnetron sputtering on Si has been examined using various electron microscopy techniques. FeSi2 nanoparticles as small as ∼4 nm are found embedded in Si after growth using co‐sputtering of FeSi2 and Si, followed by rapid thermal annealing (RTA). The formation of nanoparticles and its variation in density with Fe content is discussed in terms of phase separation. Our study shows that the size and density of the nanoparticles as well as the extent of Fe diffusion into sputtered Si and substrate can be controlled by controlling the Fe content in the co‐sputtered film. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Structure and energy band engineering of 2D materials via selective doping or phase modulation provide a significant opportunity to design them for optoelectronic devices. Here, the synthesis of high‐quality MoxRe1–xS2 alloys with tunable composition and phase structure via chemical vapor deposition growth is reported, and their novel energy band structures and optoelectronic properties are explored. The phase separation and structure reconstruction, which are found to be two serious problems in the synthesis of these alloys, are successfully suppressed through tuning their growth thermodynamics. As a result, the obtained MoxRe1–xS2 alloys have uniform composition, phase structure, and crystal orientation. Together with X‐ray photoelectron spectroscopy analysis and first‐principle calculation, the Re/Mo doping‐induced Fermi level up‐shift/down‐shift, new electronic states, and “sub‐gap” formation in MoxRe1–xS2 alloys are revealed. Especially, a strong band bowing effect is discovered in the MoxRe1–xS2 alloys with structure transition between 1T′ and 2H phases. Furthermore, these alloys reveal tunable conduction behavior from n‐type to bipolar and p‐type in 1T′ phase, as well as novel “bipolar‐like” electron conduction behavior in 2H alloys. The results highlight the unique alloying effects, which do not exist in the single‐phase 2D alloys, and provide the feasibility for potential applications in building novel electronic and optoelectronic devices.  相似文献   

3.
Ultrathin β‐MnOOH nanofibers can be produced on a large scale via a green‐chemical method using an aqueous solution of very dilute Mn(NO3)2 and aminoethanol at room temperature. High‐magnification electron microscopy demonstrates that the β‐MnOOH nanofibers are 3–5 nm thin and up to 1 micrometer long and the nanofibers are parallel assembled into bundles with an average diameter of 25 nm. By a filtration process, ultrathin mesoporous membranes with strong mechanical, thermal, and chemical stabilities are prepared from the β‐MnOOH nanofiber bundles. The membranes can separate 10‐nm nanoparticles from water at a flux of 15120 L m?2·h?1·bar?1, which was 2–3 times higher than that of commercial membranes with similar rejection properties. Based on the Young‐Laplace equation, β‐MnOOH nanofiber/polydimethylsiloxane composite membranes are developed through a novel downstream‐side evaporation process. From nanoporous to dense separation membranes can be achieved by optimizing the experimental conditions. The membranes show desirable separation performance for proteins, ethanol/water mixtures, and gases. The synthesis method of β‐MnOOH nanofibers is simple and environmentally friendly, and it is easily scalable for industry and applicable to other metal oxide systems. These composite membranes constitute a significant contribution to advanced separation technology.  相似文献   

4.
Developing efficient and economical electrocatalysts for hydrogen evolution reaction and oxygen evolution reaction with readily available metals is one of the main challenges for large scale hydrogen/oxygen production. This study reports one step synthesis of cobalt and molybdenum hybrid materials for high performance overall water splitting. The binder‐free CoS‐doped β‐Co(OH)2@amorphous MoS2+x is coated on nickel foam (NF) to form 3D networked nanoplates that have large surface area and high durability for electrochemical reactions. The catalytic activity of electrocatalyst for hydrogen evolution is mainly attributed to the unsaturated sulfur site of amorphous MoS2+x. Meanwhile, the CoS‐doped β‐Co(OH)2 plays the major role in oxygen evolution. CoS‐doped β‐Co(OH)2 and aMoS2+x are strongly bound to each other due to CoSx bridging. This CoS? Co(OH)2@aMoS2+x/NF hybrid exhibits excellent catalytic activity and stability for overall water splitting. For over 100 000 s the cell voltage required to achieve the current density of 10 mA cm–2 is only 1.58 V, which is remarkably low among the commercially available electrocatalysts. The findings open up an easy and inexpensive method of large scale fabrication of bifunctional electrocatalysts for overall water splitting.  相似文献   

5.
Hierarchical nanocomposites rationally designed in component and structure, are highly desirable for the development of lithium‐ion batteries, because they can take full advantages of different components and various structures to achieve superior electrochemical properties. Here, the branched nanocomposite with β‐MnO2 nanorods as the back‐bone and porous α‐Fe2O3 nanorods as the branches are synthesized by a high‐temperature annealing of FeOOH epitaxially grown on the β‐MnO2 nanorods. Since the β‐MnO2 nanorods grow along the four‐fold axis, the as‐produced branches of FeOOH and α‐Fe2O3 are aligned on their side in a nearly four‐fold symmetry. This synthetic process for the branched nanorods built by β‐MnO2/α‐Fe2O3 is characterized. The branched nanorods of β‐MnO2/α‐Fe2O3 present an excellent lithium‐storage performance. They exhibit a reversible specific capacity of 1028 mAh g?1 at a current density of 1000 mA g?1 up to 200 cycles, much higher than the building blocks alone. Even at 4000 mA g?1, the reversible capacity of the branched nanorods could be kept at 881 mAh g?1. The outstanding performances of the branched nanorods are attributed to the synergistic effect of different components and the hierarchical structure of the composite. The disclosure of the correlation between the electrochemical properties and the structure/component of the nanocomposites, would greatly benefit the rational design of the high‐performance nanocomposites for lithium ion batteries, in the future.  相似文献   

6.
Inorganic cubic CsPbI3 perovskite (α‐CsPbI3) has been widely explored for perovskite solar cells (PSCs) due to its thermal stability and suitable bandgap of 1.73 eV. However, α‐CsPbI3 usually requires high synthesis temperatures (>320 °C). Additionally, it usually undergoes phase transition to the nonperovskite structure phase (β‐CsPbI3), which results in poor photoelectric performance in devices. In this study, it is first found that the tortuous 3D CsPbI3 phase (γ‐CsPbI3) can be prepared and used for PSCs by solution process without any additive at low temperature (60 °C). The γ‐CsPbI3 exhibits suitable bandgap of 1.75 eV and favorable photoelectric properties. However, γ‐CsPbI3 is a metastable phase and easily transforms into β‐CsPbI3 in ambient moisture. In order to improve the stability of γ‐CsPbI3, calcium ions (Ca2+) with a relatively small radius of 100 pm are used to partially substitute lead ions (119 pm). This research proves that Ca2+ can effectively improve the stability of the γ‐CsPbI3 at room temperature. By optimizing the doping concentration of Ca2+ (CsPb1?xCaxI3, x is from 0% to 2%), the Ca2+‐doped γ‐CsPbI3 PSCs achieve a hysteresis‐free JV curve and a maximum power conversion efficiency (PCE) of 9.20%.  相似文献   

7.
The development of novel non‐noble electrocatalysts with controlled structure and surface composition is critical for efficient electrochemical hydrogen evolution reaction (HER). Herein, the rational design of porous molybdenum carbide (β‐Mo2C) spheres with different surface engineered structures (Co doping, Mo vacancies generation, and coexistence of Co doping and Mo vacancies) is performed to enhance the HER performance over the β‐Mo2C‐based catalyst surface. Density functional theory calculations and experimental results reveal that the synergistic effect of Co doping with Mo vacancies increases the electron density around the Fermi‐level and modulates the d band center of β‐Mo2C so that the strength of the Mo? H bond is reasonably optimized, thus leading to an enhanced HER kinetics. As expected, the optimized Co50‐Mo2C‐12 with porous structure displays a low overpotential (η10 = 125 mV), low‐onset overpotential (ηonset = 27 mV), and high exchange current density (j0 = 0.178 mA cm?2). Furthermore, this strategy is also successfully extended to develop other effective metal (e.g., Fe and Ni) doped β‐Mo2C electrocatalyst, indicating that it is a universal strategy for the rational design of highly efficient metal carbide‐based HER catalysts and beyond.  相似文献   

8.
Multiferroic materials have driven significant research interest due to their promising technological potential. Developing new room‐temperature multiferroics and understanding their fundamental properties are important to reveal unanticipated physical phenomena and potential applications. Here, a new room temperature multiferroic nanocomposite comprised of an ordered ferrimagnetic spinel α‐LiFe5O8 (LFO) and a ferroelectric perovskite BiFeO3 (BFO) is presented. It is observed that lithium (Li)‐doping in BFO favors the formation of LFO spinel as a secondary phase during the synthesis of LixBi1?xFeO3 ceramics. Multimodal functional and chemical imaging methods are used to map the relationship between doping‐induced phase separation and local ferroic properties in both the BFO‐LFO composite ceramics and self‐assembled nanocomposite thin films. The energetics of phase separation in Li doped BFO and the formation of BFO‐LFO composites are supported by first principles calculations. These findings shed light on Li's role in the formation of a functionally important room temperature multiferroic and open a new approach in the synthesis of light element doped nanocomposites for future energy, sensing, and memory applications.  相似文献   

9.
Layered transition metal oxides have drawn much attention as a promising candidate cathode material for sodium‐ion batteries. However, their performance degradation originating from strains and lattice phase transitions remains a critical challenge. Herein, a high‐concentration Zn‐substituted NaxMnO2 cathode with strongly suppressed P2–O2 transition is investigated, which exhibits a volume change as low as 1.0% in the charge/discharge process. Such ultralow strain characteristics ensure a stable host for sodium ion storage, which significantly improves the cycling stability and rate capability of the cathode material. Also, the strong coupling between the highly reversible capacity and the doping content of Zn in NaxMnO2 is investigated. It is suggested that a reversible anionic redox reaction can be effectively triggered by Zn ions and is also highly dependent on the Zn content. Such an ion doping strategy could shed light on the design and construction of stable and high‐capacity sodium ion host.  相似文献   

10.
β‐In2S3 is a natural defective III–VI semiconductor attracting considerable interests but lack of efficient method for its 2D form fabrication. Here, for the first time, this paper reports controlled synthesis of ultrathin 2D β‐In2S3 flakes via a facile space‐confined chemical vapor deposition method. The natural defects in β‐In2S3 crystals, clearly revealed by optical spectra and optoelectronic measurement, strongly modulate the (opto)‐electronic of as‐fabricated β‐In2S3 and render it a broad detection range from visible to near‐infrared. Particularly, the as‐fabricated β‐In2S3 photodetector shows a high photoresponsivity of 137 A W?1, a high external quantum efficiency of 3.78 × 104%, and a detectivity of 4.74 × 1010 Jones, accompanied with a fast rise and decay time of 6 and 8 ms, respectively. In addition, an interesting linear response to the testing power intensities range is observed, which can also be understood by the presence of natural defects. The unique defective structure and intrinsic optical properties of β‐In2S3, together with its controllable growth, endow it with great potential for future applications in electronics and optoelectronics.  相似文献   

11.
A unique watermelon‐like structured SiOx–TiO2@C nanocomposite is synthesized by a scalable sol–gel method combined with carbon coating process. Ultrafine TiO2 nanocrystals are uniformly embedded inside SiOx particles, forming SiOx–TiO2 dual‐phase cores, which are coated with outer carbon shells. The incorporation of TiO2 component can effectively enhance the electronic and lithium ionic conductivities inside the SiOx particles, release the structure stress caused by alloying/dealloying of Si component and maximize the capacity utilization by modifying the Si–O bond feature and decreasing the O/Si ratio (x‐value). The synergetic combination of these advantages enables the synthesized SiOx–TiO2@C nanocomposite to have excellent electrochemical performances, including high specific capacity, excellent rate capability, and stable long‐term cycleability. A stable specific capacity of ≈910 mAh g?1 is achieved after 200 cycles at the current density of 0.1 A g?1 and ≈700 mAh g?1 at 1 A g?1 for over 600 cycles. These results suggest a great promise of the proposed particle architecture, which may have potential applications in the improvement of various energy storage materials.  相似文献   

12.
NaGdF4:Eu3+, NaEuF4, and NaGdF4 nanocrystals were synthesized in the high‐boiling coordinating solvent N‐(2‐hydroxyethyl)‐ethylenediamine (HEEDA). Phase pure nanomaterials, crystallizing either in the cubic α‐phase or the hexagonal β‐phase, were obtained by adjusting one reaction parameter only, i.e., the molar ratio between metal and fluoride ions in the synthesis. The hexagonal β‐phase is formed, if this molar ratio is close to stoichiometric, whereas the cubic α‐phase is obtained in the presence of excess metal ions. The optical properties of the Eu3+ doped samples are different for the two crystal phases. The results indicate an increased number of oxygen impurities close to Eu3+ ions, if excess metal ions are used in the synthesis.  相似文献   

13.
Polycrystalline SiGe etches that are selective to silicon dioxide as well as silicon are needed for flexibility in device fabrication. A solution of NH4OH, H2O2, and H2O has been found to selectivity etch polycrystalline silicon-germanium alloys over both silicon and silicon dioxide. Optimum composition of the solution was determined by maximizing etch rates for SiGe films with several germanium compositions. The dependence of etch rates on germanium content, etching temperature, and doping concentration are reported. The etch rate and selectivity are approximately exponentially proportional to the germanium content. Etching was found to be insensitive to deposition method, doping method, and annealing conditions of the SiGe films. In addition, etching leaves a smooth silicon substrate surface after removal of SiGe films.  相似文献   

14.
The roster of materials exhibiting metal–insulator transitions with sharply discontinuous switching of electrical conductivity close to room temperature remains rather sparse, despite the fundamental interest in the electronic instabilities manifested in such materials and the plethora of potential technological applications ranging from frequency‐agile metamaterials to electrochromic coatings and Mott field‐effect transistors. Here, unprecedented, pronounced metal‐insulator transitions induced by application of a voltage are demonstrated for nanowires of a vanadium oxide bronze with intercalated divalent cations, β‐PbxV2O5 (x ≈ 0.33). The induction of the phase transition through application of an electric field at room temperature makes this system particularly attractive and viable for technological applications. A mechanistic basis for the phase transition is proposed based on charge disproportionation evidenced at room temperature in near‐edge X‐ray absorption fine structure (NEXAFS) spectroscopy measurements, ab initio density functional theory calculations of the band structure, and electrical transport data, suggesting that transformation to the metallic state is induced by melting of specific charge localization and ordering motifs extant in these materials.  相似文献   

15.
A series of high quality NixMg1‐xO bowl‐shaped array films are successfully prepared by a simple one‐step assembly of polystyrene colloidal spheres and metal oxide precursors at oil–water interface, and further used to fabricate nanodevices. The doping of Mg2+ can greatly enhance the current and spectrum responsivity of NiO film‐based nanodevice. The maximum Rλ value of these bowl‐shaped NixMg1‐xO film‐based devices measured in the study shows 4–5 orders of enhancement than the previously reported NixMg1‐xO film at equal doping.  相似文献   

16.
2D layered heterostructures have attracted intensive interests due to their unique optical, transport, and interfacial properties. The laterally stitched heterojunction based on dissimilar 2D transition metal dichalcogenides forms an intrinsic pn junction without the necessity of applying an external voltage. However, no scalable processes are reported to construct the devices with such lateral heterostructures. Here, a scalable strategy, two‐step and location‐selective chemical vapor deposition, is reported to synthesize self‐aligned WSe2–MoS2 monolayer lateral heterojunction arrays and demonstrates their light‐emitting devices. The proposed fabrication process enables the growth of high‐quality interfaces and the first successful observation of electroluminescence at the WSe2–MoS2 lateral heterojunction. The electroluminescence study has confirmed the type‐I alignment at the interface rather than commonly believed type‐II alignment. This self‐aligned growth process paves the way for constructing various 2D lateral heterostructures in a scalable manner, practically important for integrated 2D circuit applications.  相似文献   

17.
Vanadium dioxide (VO2) is a well‐studied Mott‐insulator because of the very abrupt physical property switching during its semiconductor‐to‐metal transition (SMT) around 341 K (68 °C). In this work, through novel oxide‐metal nanocomposite designs (i.e., Au:VO2 and Pt:VO2), a very broad range of SMT temperature tuning from ≈ 323.5 to ≈ 366.7 K has been achieved by varying the metallic secondary phase in the nanocomposites (i.e., Au:VO2 and Pt:VO2 thin films, respectively). More surprisingly, the SMT Tc can be further lowered to ≈ 301.8 K (near room temperature) by reducing the Au particle size from 11.7 to 1.7 nm. All the VO2 nanocomposite thin films maintain superior phase transition performance, i.e., large transition amplitude, very sharp transition, and narrow width of thermal hysteresis. Correspondingly, a twofold variation of the complex dielectric function has been demonstrated in these metal‐VO2 nanocomposites. The wide range physical property tuning is attributed to the band structure reconstruction at the metal‐VO2 phase boundaries. This demonstration paved a novel approach for tuning the phase transition property of Mott‐insulating materials to near room temperature transition, which is important for sensors, electrical switches, smart windows, and actuators.  相似文献   

18.
The process of electrodeposition of β‐PbO thin films from aqueous solutions of PbII salts has been studied in detail. Contrary to the mechanism assumed in previous studies, thin films of crystalline β‐PbO are obtained after cathodic electrolysis in aqueous solutions of various soluble salts of PbII (Pb(NO3)2, Pb(ClO4)2, and Pb(CH3COO)2), and in both the presence and the absence of O2, thus indicating no contribution of OH generation by electroreduction of NO3 and/or O2 to the formation of β‐PbO. A gradual color change is noted: a freshly electrodeposited gray film turns yellow as it dries in air. Drying of the films under controlled atmosphere (Ar or O2), combined with scanning electron microscopy (SEM) observation and X‐ray diffraction (XRD) measurement, has revealed that freshly deposited films are of metallic Pb, which are oxidized and converted into β‐PbO. Such a reaction is operative only when a freshly electrodeposited activated wet Pb film is in contact with gaseous O2. Despite the rapid conversion of a solid material, the resultant β‐PbO thin films are highly crystallized and possess highly ordered internal nanostructure. Elongated nanoparticles (30 nm × 100 nm) are assembled in a regular alignment to compose a large platelet (greater than 10 μm in size) with single‐crystalline character, as revealed by transmission electron microscopy (TEM) observation and selected‐area electron diffraction (SAED) measurement.  相似文献   

19.
The p‐type nanowire field‐effect transistor (FET) with a SiGe shell channel on a Si core is optimally designed and characterized using in‐depth technology computer‐aided design (TCAD) with quantum models for sub‐10‐nm advanced logic technology. SiGe is adopted as the material for the ultrathin shell channel owing to its two primary merits of high hole mobility and strong Si compatibility. The SiGe shell can effectively confine the hole because of the large valence‐band offset (VBO) between the Si core and the SiGe channel arranged in the radial direction. The proposed device is optimized in terms of the Ge shell channel thickness, Ge fraction in the SiGe channel, and the channel length (Lg) by examining a set of primary DC and AC parameters. The cutoff frequency (fT) and maximum oscillation frequency (fmax) of the proposed device were determined to be 440.0 and 753.9 GHz when Lg is 5 nm, respectively, with an intrinsic delay time (τ) of 3.14 ps. The proposed SiGe‐shell channel p‐type nanowire FET has demonstrated a strong potential for low‐power and high‐speed applications in 10‐nm‐and‐beyond complementary metal‐oxide‐semiconductor (CMOS) technology.  相似文献   

20.
Lanthanide‐doped luminescent nanoparticles are an appealing system for nanothermometry with biomedical applications due to their sensitivity, reliability, and minimal invasive thermal sensing properties. Here, four unique hybrid organic–inorganic materials prepared by combining β‐NaGdF4 and PMOs (periodic mesoporous organosilica) or mSiO2 (mesoporous silica) are proposed. PMO/mSiO2 materials are excellent candidates for biological/biomedical applications as they show high biocompatibility with the human body. On the other hand, the β‐NaGdF4 matrix is an excellent host for doping lanthanide ions, even at very low concentrations with yet very efficient luminescence properties. A new type of Er3+–Yb3+ upconversion luminescence nanothermometers operating both in the visible and near infrared regime is proposed. Both spectral ranges permit promising thermometry performance even in aqueous environment. It is additionally confirmed that these hybrid materials are non‐toxic to cells, which makes them very promising candidates for real biomedical thermometry applications. In several of these materials, the presence of additional voids leaves space for future theranostic or combined thermometry and drug delivery applications in the hybrid nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号