首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two donor–acceptor (D−A) copolymers, PEHBDT-BTz and PODBDT-BTz, containing the same backbone of benzodithiophene (BDT) and bithiazole (BTz) units but different side chains were designed and synthesized. Effects of the side chains of BDT and BTz units on solubility, absorption spectra, energy levels, film morphology, and photovoltaic properties of the polymers were investigated. Results showed that the more branched side chains could increase the molecular weight and the introduction of alkylthienyl groups into BTz unit benefits to broaden the absorption and lower the bandgaps as well as deepen HOMO levels, which are propitious to improve the short-circuit current density (Jsc) and open-circuit voltage (Voc) of photovoltaic cells. Polymer solar cells (PSCs) were prepared with the polymers as electron donors and PCBM as an acceptor. The device fabrication conditions, including the additive, the different acceptor and blend ratio of the polymer donor and acceptor, have been optimized. PCE of PSCs based on the copolymers varied from 2.92% for PODBDT-BTz to 3.71% for PEHBDT-BTz, depending on the type and topology of the side chains on the BDT moiety. The results indicate that an appropriate choice of side chains on the backbone is an effective way to improve photovoltaic performance of the related PSCs.  相似文献   

2.
Polymer‐fullerene packing in mixed regions of a bulk heterojunction solar cell is expected to play a major role in exciton‐dissociation, charge‐separation, and charge‐recombination processes. Here, molecular dynamics simulations are combined with density functional theory calculations to examine the impact of nature and location of polymer side‐chains on the polymer‐fullerene packing in mixed regions. The focus is on poly‐benzo[1,2‐b:4,5‐b′]dithiophene‐thieno[3,4‐c]pyrrole‐4,6‐dione (PBDTTPD) as electron‐donating material and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) as electron‐accepting material. Three polymer side‐chain patterns are considered: i) linear side‐chains on both benzodithiophene (BDT) and thienopyrroledione (TPD) moieties; ii) two linear side‐chains on BDT and a branched side‐chain on TPD; and iii) two branched side‐chains on BDT and a linear side‐chain on TPD. Increasing the number of branched side‐chains is found to decrease the polymer packing density and thereby to enhance PBDTTPD–PC61 BM mixing. The nature and location of side‐chains are found to play a determining role in the probability of finding PC61BM molecules close to either BDT or TPD. The electronic couplings relevant for the exciton‐dissociation and charge‐recombination processes are also evaluated. Overall, the findings are consistent with the experimental evolution of the PBDTTPD–PC61BM solar‐cell performance as a function of side‐chain patterns.  相似文献   

3.
The performance of all‐polymer solar cells (all‐PSCs) is often limited by the poor exciton dissociation process. Here, the design of a series of polymer donors ( P1 – P3 ) with different numbers of fluorine atoms on their backbone is presented and the influence of fluorination on charge generation in all‐PSCs is investigated. Sequential fluorination of the polymer backbones increases the dipole moment difference between the ground and excited states (Δµge) from P1 (18.40 D) to P2 (25.11 D) and to P3 (28.47 D). The large Δµge of P3 leads to efficient exciton dissociation with greatly suppressed charge recombination in P3 ‐based all‐PSCs. Additionally, the fluorination lowers the highest occupied molecular orbital energy level of P3 and P2 , leading to higher open‐circuit voltage (VOC). The power conversion efficiency of the P3 ‐based all‐PSCs (6.42%) outperforms those of the P2 and P1 (5.00% and 2.65%)‐based devices. The reduced charge recombination and the enhanced polymer exciton lifetime in P3 ‐based all‐PSCs are confirmed by the measurements of light‐intensity dependent short‐circuit current density (JSC) and VOC, and time‐resolved photoluminescence. The results provide reciprocal understanding of the charge generation process associated with Δµge in all‐PSCs and suggest an effective strategy for designing π‐conjugated polymers for high performance all‐PSCs.  相似文献   

4.
In this work, four donor (D)–acceptor (A) copolymers based on benzodithiophene (BDT) and benzothiadiazole (BT) with different alkylthiolated and/or fluorinated side chains are developed for efficient fullerene and nonfullerene polymer solar cells (PSCs). The synergistic effect of sulfuration and fluorination on the optical absorption, energy level, crystallinity, carrier mobility, blend morphology, and photovoltaic performance is investigated systematically. By incorporating sulfur atoms onto the side chains, a little blueshifted but significantly increased absorption can be obtained for PBDTS‐FBT compared to PBDT‐FBT . On the other side, a little more blueshifted but much stronger absorption and much lower‐lying highest occupied molecular orbital (HOMO) level can be realized for PBDTF‐FBT when introducing fluorine atoms instead of sulfur atoms. With the combination of both fluorination and sulfuration strategies, PBDTS‐FBT exhibits the best absorption ability, lowest HOMO energy level, and highest crystallinity, which make PBDTSF‐FBT devices show the highest power conversion efficiency (PCE) of 10.69% in fullerene PSCs and 11.66% in nonfullerene PSCs. The PCE of 11.66% is the best value for PSCs based on BT‐containing copolymer donors reported so far. The results indicate that fluorination and sulfuration have a synergistically positive effect on the performance of D–A photovoltaic copolymers and their solar cell devices.  相似文献   

5.
Molecular designing of photovoltaic polymers based on benzodithiophene (BDT) building blocks for high power conversion efficiency (PCE) in polymer solar cells (PSCs) arouse much attention in the past few years. To meliorate the energy levels of photovoltaic polymers featuring alkylthio substituted BDT units, a novel post-polymerization oxidation method was proposed applied in converting sulfur atom into sulfonyl group on side chains of the pristine polymer PBT-S. After treating with tiny amount of meta-chloroperoxybenzoic acid (m-CPBA) and hydrogen peroxide (H2O2), two batches of the target polymers, namely, PBT-SO2-M and PBT-SO2-H were prepared for the first time, respectively. The photochemical and electrochemical results indicate that both the HOMO levels are distinctly dropped with almost no influence on band gaps by introducing strong electron-withdrawing sulfonyl groups on side chains of BDT. Accordingly, the photovoltaic results reveal that the Voc of devices based on PBT-SO2-M and PBT-SO2-H are 0.81, 0.71 V which are 0.17 and 0.07 V higher than that of pristine polymer PBT-S, respectively. Moreover, the Jsc and PCE of PBT-SO2-H devices are comparable with those of the devices based on PBT-S. Overall, this work suggests that the molecular energy levels of D–A copolymers can be effectively tuned by a post-oxidation method.  相似文献   

6.
The effects of central alkoxy side chain length of a series of narrow bandgap small molecule acceptors (SMAs) on their physicochemical properties and on the photovoltaic performance of the SMA‐based polymer solar cells (PSCs) are systematically investigated. It is found that the ordered aggregation of these SMAs in films is enhanced gradually with the increase of alkoxy chain length. The single‐crystal structures of these SMAs further reveal that small changes in the side chain length can have a dramatic impact on molecular self‐assembly. The short‐circuit current density and power conversion efficiency values of the corresponding PSCs increase with the increase of the side chain length of the SMAs. The π–π coherence length of the SMAs in the active layers is increased with the increase of the side chain length, which could be the reason for the increase of the Jsc in the PSCs. The results indicate that small changes in side chain length can have a dramatic impact on the molecular self‐assembly, morphology, and photovoltaic performance of the PSCs. The structure–performance relationship established in this study can provide important instructions for the side chain engineering and for the design of efficient SMAs materials.  相似文献   

7.
Two new 2D-conjugated D-A copolymers, PBDTT-S-DPP and PBDTSe-S-DPP, based on benzodithiophene (BDT) donor unit with alkylthio-thiophene or alkylthio-selenophene conjugated side chains and 2,5-bis(2-butyloctyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP) acceptor unit, were synthesized for the application as donor materials in polymer solar cells (PSCs). The two polymers were characterized by absorption spectroscopy, cyclic voltammetry, thermogravimetric analysis, theoretical calculation with density functional theory, X-ray diffraction and photovoltaic measurements. The results show that the alkylthio-thiophene/selenophene side groups on BDT unit and intramolecular hydrogen bonding interaction in DPP acceptor unit play important roles in affecting the absorption, HOMO energy levels, molecular planarity and the crystallinity of the polymers. The PSCs based on PBDTT-S-DPP or PBDTSe-S-DPP as donor and PC71BM as acceptor demonstrate power conversion efficiency (PCE) of 5.62% and 5.01%, with relatively higher Voc of 0.79 V and 0.76 V, respectively.  相似文献   

8.
Tuning the side chains of conjugated polymers is a simple, yet effective strategy for modulating their structural and electrical properties, but their impact on n‐type conjugated polymers has not been studied extensively, particularly in the area of all‐polymer solar cells (all‐PSCs). Herein, the effects of side chain engineering of P(NDI2OD‐T2) polymer (also known as Polyera Activink N2200) are investigated, which is the most widely used n‐type polymer in all‐PSCs and organic field‐effect transistors (OFETs), on their structural and electronic properties. A series of naphthalenediimide‐bithiophene‐based copolymers (P(NDIR‐T2)) is synthesized, with different side chains (R) of 2‐hexyldecyl (2‐HD), 2‐octyldodecyl (2‐OD), and 2‐decyltetradecyl (2‐DT). The P(NDI2HD‐T2) exhibits more noticeable crystalline behaviors than P(NDI2OD‐T2) and P(NDI2DT‐T2), thereby facilitating superior 3D charge transport. For example, the P(NDI2HD‐T2) shows the highest OFET electron mobility (1.90 cm2 V?1 s?1). Also, a series of all‐PSCs is produced using different electron donors of PTB7‐Th, PTB7, and PPDT2FBT. The P(NDI2HD‐T2) based all‐PSCs produce much higher power conversion efficiency (PCE) irrespective of the electron donors. In particular, the PTB7‐Th:P(NDI2HD‐T2) forms highly ordered, strong face‐on interchain stackings, and has better intermixed bulk‐heterojunction morphology, producing the highest PCE of 6.11% that has been obtained by P(NDIR‐T2) based all‐PSCs to date.  相似文献   

9.
Two novel wide bandgap copolymers based on quinoxalino[6,5‐f]quinoxaline (NQx) acceptor block, PBDT–NQx and PBDTS–NQx, are successfully synthesized for efficient nonfullerene polymer solar cells (PSCs). The attached conjugated side chains on both benzodithiophene (BDT) and NQx endow the resulting copolymers with low‐lying highest occupied molecular orbital (HOMO) levels. The sulfur atom insertion further reduces the HOMO level of PBDTS–NQx to ?5.31 eV, contributing to a high open‐circuit voltage, V oc, of 0.91 V. Conjugated n ‐octylthienyl side chains attached on the NQx skeletons also significantly improve the π–π* transitions and optical absorptions of the copolymers in the region of short wavelengths, which induce a good complementary absorption when blending with the low bandgap small molecular acceptor of 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene. The wide absorption range makes the active blends absorb more photons, giving rise to a high short‐circuit current density, J sc, value of 15.62 mA cm?2. The sulfur atom insertion also enhances the crystallinity of PBDTS–NQx and presents its blend film with a favorable nanophase separation, resulting in improved J sc and fill factor (FF) values with a high power conversion efficiency of 11.47%. This work not only provides a new fused ring acceptor block (NQx) for constructing high‐performance wide bandgap copolymers but also provides the NQx‐based copolymers for achieving highly efficient nonfullerene PSCs.  相似文献   

10.
Fullerene bisadducts have emerged as promising electron‐accepting materials because of their ability to increase the open‐circuit voltage (VOC) of polymer solar cells (PSCs) due to their relatively high lowest unoccupied molecular orbital (LUMO) energy levels. It should be noted that the as‐prepared fullerene bisadducts are in fact a mixture of isomers. Here, the effects of fullerene bisadduct regioisomers on photovoltaic performance are examined. The trans‐2, trans‐3, trans‐4, and e isomers of dihydronaphthyl‐based [60]fullerene bisadduct (NCBA) are isolated and used as acceptors for P3HT‐based PSCs. The four NCBA isomers exhibit different absorption spectra, electrochemical properties, and electron mobilities, leading to varying PCE values of 5.8, 6.3, 5.6, and 5.5%, respectively, which are higher than that based on an NCBA mixture (5.3%), suggesting the necessity to use the individual fullerene bisadduct isomer for high‐performance PSCs.  相似文献   

11.
A new small‐molecule nonfullerene acceptor based on the benzo[1,2‐b:4,5‐b′]dithiophene (BDT) fused central core with asymmetrical alkoxy and thienyl side chains, namely TOBDT , is designed and synthesized. The alkoxy unit helps narrow the bandgap, and thienyl side chain helps enhance the intermolecular interaction. As a result, TOBDT is suitable to match the deep‐lying highest occupied molecular orbital (HOMO) of polymer donor PM6 . Then, a strong crystalline acceptor IDIC is introduced as the third component to fabricate as‐cast nonfullerene ternary devices to achieve absorption and morphology control. Addition of IDIC not only mixes well with TOBDT but modulates the morphology of the blend film, which helps to balance the charge transport properties and reduce the photovoltage loss of ternary devices. All these contribute to synergetic improvement of Jsc, Voc, and fill factor parameters, leading to a power conversion efficiency of 14.0% for the as‐cast fullerene‐free ternary device.  相似文献   

12.
Developing efficient interfacial hole transporting materials (HTMs) is crucial for achieving high‐performance Pb‐free Sn‐based halide perovskite solar cells (PSCs). Here, a new series of benzodithiophene (BDT)‐based organic small molecules containing tetra‐ and di‐triphenyl amine donors prepared via a straightforward and scalable synthetic route is reported. The thermal, optical, and electrochemical properties of two BDT‐based molecules are shown to be structurally and energetically suitable to serve as HTMs for Sn‐based PSCs. It is reported here that ethylenediammonium/formamidinium tin iodide solar cells using BDT‐based HTMs deliver a champion power conversion efficiency up to 7.59%, outperforming analogous reference solar cells using traditional and expensive HTMs. Thus, these BDT‐based molecules are promising candidates as HTMs for the fabrication of high‐performance Sn‐based PSCs.  相似文献   

13.
One of the most promising approaches to achieve high‐performance polymer solar cells (PSCs) is to develop nonfullerene small molecule acceptors (SMAs) with an absorption extending to the near‐infrared (NIR) region. In this work, two novel SMAs, namely, BTTIC and BTOIC, are designed and synthesized, with optical bandgaps (Egopt) of 1.47 and 1.39 eV, respectively. Desipte the narrow Egopt, the PBDB‐T:BTTIC‐ and PBDB‐T:BTOIC‐based PSCs can maintain high VOCs of over 0.90 and 0.86 V, respectively, with low energy losses (Eloss) < 0.6 eV. Meanwhile, due to the favorable morphology of the PBDB‐T:BTTIC blend, balanced carrier mobilities are achieved. The high external quantum efficiencies enable a high power conversion efficiency (PCE) up to 13.18% for the PBDB‐T:BTTIC‐based PSCs. In comparison, BTOIC shows an excessive crystallization propensity owing to its oxyalkyl side groups, which eventually leads to a relatively low PCE for the PBDB‐T:BTOIC‐based PSCs. Overall, this work provides insights into the design of novel NIR‐absorbing SMAs for nonfullerene PSCs.  相似文献   

14.
A series of amino N‐oxide functionalized polyfluorene homopolymers and copolymers (PNOs) are synthesized by oxidizing their amino functionalized precursor polymers (PNs) with hydrogen peroxide. Excellent solubility in polar solvents and good electron injection from high work‐function metals make PNOs good candidates for interfacial modification of solution processed multilayer polymer light‐emitting diodes (PLEDs) and polymer solar cells (PSCs). Both PNOs and PNs are used as cathode interlayers in PLEDs and PSCs. It is found that the resulting devices show much better performance than devices based on a bare Al cathode. The effect of side chain and main chain variations on the device performance is investigated. PNOs/Al cathode devices exhibit better performance than PNs/Al cathode devices. Moreover, devices incorporating polymers with para‐linkage of pyridinyl moieties exhibit better performance than those using polymers with meta‐linked counterparts. With a poly[(2,7‐(9,9‐bis(6‐(N,N‐diethylamino)‐hexyl N‐oxide)fluorene))‐alt‐(2,5‐pyridinyl)] (PF6NO25Py) cathode interlayer, the resulting device exhibits a luminance efficiency of 16.9 cd A?1 and a power conversion efficiency of 6.9% for PLEDs and PSCs, respectively. These results indicate that PNOs are promising new cathode interlayers for modifying a range of optoelectronic devices.  相似文献   

15.
Two donor–acceptor (D–A) type conjugated polymers using dodecyl- and ethylhexyl-thiophene substituted benzo[1,2-b:4,5-b′]dithiophene (BDT-DDT and BDT-EHT, respectively) as donors and n-alkylthieno[3,4-c]pyrrole-4,6-dione (TPD) as acceptor were synthesized and characterized. The thiophene substituted BDT unit was recognized as a two-dimensional (2D) π-extended segment with high carrier mobility and TPD unit was a relatively strong electron-drawing acceptor, which could lead to deep-lying highest occupied molecular orbital (HOMO) levels of the polymers. The optical properties, electrochemical behavior, and charge carrier properties of the polymers were compared in parallel. The results indicated that ethylhexyl-substitution could optimize the polymer structures and properties. The bulk-heterojunction polymer solar cells (PSCs) based on the two polymers were fabricated and characterized. The devices based on ethylhexyl-substituted polymer showed better performance than that of dodecyl-substituted one. Further analysis proved that the improvement was mainly ascribed to the formation of well-defined nanostructures by using branched ethylhexyl side chains, which facilitated charge separation and transport in the bicontinous active layer. This study suggests that obtaining appropriate film morphology and phase separation by altering alkyl side chains is extraordinary important for high performance PSCs based on D–A type polymers.  相似文献   

16.
Polycyclic aromatics offer great flexibility in tuning the energy levels and bandgaps of resulting conjugated polymers. These features have been exploited in the recent examples of benzo[2,1‐b:3,4‐b']dithiophene ( BDT )‐based polymers for bulk heterojunction (BHJ) photovoltaics (ACS Appl. Mater. Interfaces 2009 , 1, 1613). Taking one step further, a simple oxidative photocyclization is used here to convert the BDT with two pendent thiophene units into an enlarged planar polycyclic aromatic ring— q uadra t hieno n aphthalene ( QTN ). The reduced steric hindrance and more planar structure promotes the intermolecular interaction of QTN‐ based polymers, leading to increased hole mobility in related polymers. As‐synthesized homopolymer ( HMPQTN ) and donor–acceptor polymer ( PQTN ‐ BT ) maintain a low highest occupied molecular orbital (HOMO) energy level, ascribable to the polycyclic aromatic ( QTN ) moiety, which leads to a good open‐circuit voltage in BHJ devices of these polymers blended with PCBM ([6,6]‐phenyl‐C61‐butyric acid methyl ester; HMPQTN : 0.76 V, PQTN ‐ BT : 0.72 V). The donor–acceptor polymer ( PQTN ‐ BT ) has a smaller optical bandgap (1.6 eV) than that of HMPQTN (2.0 eV), which explains its current (5.69 mA cm?2) being slightly higher than that of HMPQTN (5.02 mA cm?2). Overall efficiencies over 2% are achieved for BHJ devices fabricated from either polymer with PCBM as the acceptor.  相似文献   

17.
A series of alternating copolymers of cyclopenta[2,1‐b;3,4‐b′]dithiophene (CPDT) and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) have been prepared and characterized for polymer solar cell (PSC) applications. Different alkyl side chains, including butyl (Bu), hexyl (He), octyl (Oc), and 2‐ethylhexyl (EH), are introduced to the TPD unit in order to adjust the packing of the polymer chain in the solid state, while the hexyl side chain on the CPDT unit remains unchanged to simplify discussion. The polymers in this series have a simple main chain structure and can be synthesized easily, have a narrow band gap and a broad light absorption. The different alkyl chains on the TPD unit not only significantly influence the solubility and chain packing, but also fine tune the energy levels of the polymers. The polymers with Oc or EH group have lower HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energy levels, resulting higher open circuit voltages (Voc) of the PSC devices. Power conversion efficiencies (PCEs) up to 5.5% and 6.4% are obtained from the devices of the Oc substituted polymer (PCPDTTPD‐Oc) with PC61BM and PC71BM, respectively. This side chain effect on the PSC performance is related to the formation of a fine bulk heterojunction structure of polymer and PCBM domains, as observed with atomic force microscopy.  相似文献   

18.
Improved charge generation via fast and effective hole transfer in all‐polymer solar cells (all‐PSCs) with large highest occupied molecular orbital (HOMO) energy offset (ΔEH) is revealed utilizing ultrafast transient absorption (TA) spectroscopy. Blending the same nonfullerene acceptor poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene) (N2200) with three different donor polymers produces all‐polymer blends with different ΔEH. The selective excitation of N2200 component in blends enables to uncover the hole transfer process from hole polaron‐induced bleaching and absorption signals probed at different wavelength. As the ΔEH is enhanced from 0.14 to 0.37 eV, the hole transfer rate rises more than one order and the hole transfer efficiency increases from 12.9% to 86.8%, in agreement with the trend of internal quantum efficiency in the infrared region where only N2200 has absorption. Additionally, Grazing‐incidence wide‐angle X‐ray scattering measurements indicate that face‐on crystal orientation in both polymer donor and acceptor also plays an important role in facilitating the charge generation via hole transfer in all‐PSCs. Hence, large ΔEH and proper crystal orientation should be considered in material design for efficient hole transfer in N2200‐based heterostructures. These results can provide valuable guidance for fabrication of all‐PSCs to further improve power conversion efficiency.  相似文献   

19.
[6, 6]‐Phenyl‐C61‐butyric acid methyl ester (PC60BM) is the widely used acceptor material in polymer solar cells (PSCs). Nevertheless, the low LUMO energy level and weak absorption in visible region are its two weak points. For enhancing the solar light harvest, the soluble C70 derivative PC70BM has been used as acceptor instead of PC60BM in high efficiency PSCs in recent years. But, the LUMO level of PC70BM is the same as that of PC60BM, which is too low for the PSCs based on the polymer donors with higher HOMO level, such as poly (3‐hexylthiophene) (P3HT). Here, a new soluble C70 derivative, indene‐C70 bisadduct (IC70BA), is synthesized with high yield of 58% by a one‐pot reaction of indene and C70 at 180 °C for 72 h. The electrochemical properties and electronic energy levels of the fullerene derivatives are measured by cyclic voltammetry. The LUMO energy level of IC70BA is 0.19 eV higher than that of PC70BM. The PSC based on P3HT with IC70BA as acceptor shows a higher Voc of 0.84 V and higher power conversion efficiency (PCE) of 5.64%, while the PSC based on P3HT/PC60BM and P3HT/PC70BM displays Voc of 0.59 V and 0.58 V, and PCE of 3.55% and 3.96%, respectively, under the illumination of AM1.5G, 100 mW cm?2. The results indicate that IC70BA is an excellent acceptor for the P3HT‐based PSCs and could be a promising new acceptor instead of PC70BM for the high performance PSCs based on narrow bandgap conjugated polymer donor.  相似文献   

20.
In previous studies, PSCs based on polymers with an inward alkyl positioned DTBT unit showed poor power conversion efficiency mainly due to the greatly distorted polymer backbone structure caused by severe steric hindrance between the alkyl groups on the flanking thiophene of DTBT and the BT unit. In this study, PSCs based on polymers with an inward alkyl positioned DTBT unit are markedly improved by controlling the molecular weight and alkyl chain length. Two BDT-DTBTs and one BDT-BT polymers were synthesized by engineering alkylthienyl chains on BDT and by installing these with a short alkyl chain on the inward alkyl positioned DTBT. Extraordinary bathochromic shifts in the absorption maxima at 146 nm for PA and 165 nm for PB were observed going from solution to a solid film state, suggesting great differences in the polymer structures of the two states. Optical and electrochemical measurements were taken, and the HOMO levels of PA, PB, and PC were determined to be −5.76, −5.66, and −5.71 eV, respectively, indicating very low-lying HOMO energy levels. The optimized PSCs based on PA, PB, and PC exhibit power conversion efficiencies (PCEs) of 3.75%, 2.42%, and 2.30%, respectively, with Voc (0.77–0.86 V), Jsc (6.9–8.7 mA/cm2), and FF (38–52%). We believe that the highest PCE for the PSCs based on PA may be attributed to the high molecular weight and improved processability relative to those of PB and PC. A theoretical study suggests that the polymer backbones of PA and PB are highly distorted between the donor unit and the acceptor unit, by as much as 49°, possibly by the steric hindrance between BT and the inward positioned methyl group on the flanking thiophene. Therefore, the conjugations for the HOMO p-orbitals of PA and PB are highly localized throughout the backbone while the conjugations for the HOMO p-orbitals of PC are well delocalized. The AFM study revealed that DIO additive greatly changed the morphology of the polymer blend from an amorphous state into distinct nanoscale phase separated states, leading to a great improvement in PCEs. The XRD study revealed that all polymers are amorphous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号