共查询到5条相似文献,搜索用时 15 毫秒
1.
J. Pfeiffer J. Peerlings R. Riemenschneider R. Genovese M. Aziz E. Goutain H. Künzel W. Grtz G. Bhm M. C. Amann P. Meißner H. L. Hartnagel 《Materials Science in Semiconductor Processing》2000,3(5-6)
In this work we report on micromechanically tunable Fabry–Pérot filter concepts for wavelength division multiplexing (WDM) systems. The optical resonator is designed for a cavity length around 30 μm in order to increase the filter selectivity while relaxing the demands on the required mirror reflectance. The introduction of micromechanical actuators, utilizing electrothermal and electrostatic principles, allows wavelength tuning of the filter over a range of more than 40 nm in the 1.55 μm wavelength regime. The movable Bragg mirror, designed as suspended membrane and fabricated with an InP bulk-micromachining technology, consists of a molecular beam epitaxy-grown InAlGaAs quarter-wavelength multilayer stack. The influence of micromechanical actuation and the effect of intrinsic mechanical stress on the mirror deformation has been investigated systematically to optimize the optical filter performance. Filter losses induced by the light absorption within the epitaxial Bragg mirror have been minimized using a highly doped InGaAs/InAlAs composition. Furthermore, low-loss Fabry–Pérot filters have been fabricated using InAlGaAs/InAlAs Bragg mirrors. The measured full-width at half-maximum (FWHM) is 0.24 nm and a filter insertion loss of 2.8 dB has been observed. The FWHM is kept below 0.35 nm over an entire tuning range of 40 nm for an actuation power of 1.3 mW. The bulk-micromachining technology presented here is open for the future development of WDM components, e.g. tunable receivers or laser diodes. 相似文献
2.
Fan Wang Qinchuan Li Jong-Oh Park Shaohui Zheng Eunpyo Choi 《Advanced functional materials》2021,31(13):2007749
The development of ultralow voltage high-performance bioartificial muscles with large bending strain, fast response time, and excellent actuation durability is highly desirable for promising applications such as soft robotics, active biomedical devices, flexible haptic displays, and wearable electronics. Herein, a novel high-performance low-priced bioartificial muscle based on functional carboxylated bacterial cellulose (FCBC) and polypyrrole (PPy) nanoparticles is reported, exhibiting a large bending strain of 0.93%, long actuated bending durability (96% retention for 5 h) under an ultralow harmonic input of 0.5 V, broad frequency bandwidth up to 10 Hz, fast response time (≈4 s) in DC responses, high energy density (6.81 KJ m−3), and high power density (5.11 KW m−3), all of which mainly stem from its high surface area and porosity, large specific capacitance, tuned mechanical properties, and strong ionic interactions of cations and anions in ionic liquid with FCBC and PPy nanoparticles. More importantly, bioinspired applications such as the grapple robot, bionic medical stent, bionic flower, and wings-vibrating have been realized. These successful demonstrations offer a viable means for developing high-performance bioartificial muscles for next-generation soft bioelectronics including bioinspired robotics, biomedical microdevices, and wearable electronics. 相似文献
3.
Hoon Yi Sang‐Hyeon Lee Hyunwook Ko Dohoon Lee Won‐Gyu Bae Tae‐il Kim Dong Soo Hwang Hoon Eui Jeong 《Advanced functional materials》2019,29(34)
Photonic skins enable a direct and intuitive visualization of various physical and mechanical stimuli with eye‐readable colorations by intimately laminating to target substrates. Their development is still at infancy compared to that of electronic skins. Here, an ultra‐adaptable, large‐area (10 × 10 cm2), multipixel (14 × 14) photonic skin based on a naturally abundant and sustainable biopolymer of a shape‐memory, responsive multiphase cellulose derivative is presented. The wearable, multipixel photonic skin mainly consists of a photonic sensor made of mesophase cholesteric hydroxypropyl cellulose and an ultra‐adaptable adhesive layer made of amorphous hydroxypropyl cellulose. It is demonstrated that with multilayered flexible architectures, the multiphase cellulose derivative–based integrated photonic skin can not only strongly couple to a wide range of biological and engineered surfaces, with a maximum of ≈180 times higher adhesion strengths compared to those of the polydimethylsiloxane adhesive, but also directly convert spatiotemporal stimuli into visible color alterations in the large‐area, multipixel array. These colorations can be simply converted into 3D strain mapping data with digital camera imaging. 相似文献
4.
Tianxing Chen Tengteng Yao Hui Peng Andrew K. Whittaker Yao Li Shenmin Zhu Zhaoyang Wang 《Advanced functional materials》2021,31(45):2106079
The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long-time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and photodynamic cancer therapies. However, to incorporate the phototherapy agents into hydrogels, complex modifications are generally unavoidable. Moreover, these phototherapy agents usually suffer from low efficiency and work at different irradiation wavelengths outside the near infrared windows. Hence, a method for the fabrication of an injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy, through the Schiff-base reaction between amido modified carbon dots (NCDs) and aldehyde modified cellulose nanocrystals is proposed. The NCDs act as both phototherapy agents and crosslinkers to form hydrogels. Significantly, the NCDs demonstrate an extremely high photothermal conversion efficiency of 77.6% which is among the highest levels for photothermal agents and a high singlet quantum yield of 0.37 under a single 660 nm light-emitting diode irradiation. The hydrogels are examined through in vitro and in vivo animal experiments which show nontoxic and effectively tumor inhibition. Thus, the strategy of direct reaction of phototherapy agents and the matrix not only provides new strategies for injectable hydrogel fabrication but paves a new road for advanced tumor treatment. 相似文献