首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of the crystallization of perovskite films and avoiding the oxidation of Sn2+ during the deposition process are very important for achieving Sn/Pb binary perovskite solar cells (PVSCs) with high power conversion efficiency (PCE) and producibility. In this work, a high‐quality HC(NH2)2Pb0.7Sn0.3I3 (FAPb0.7Sn0.3I3) film deposited from the two‐step solution process by introducing methylammonium thiocyanate (MASCN) as a bifunctional additive into the precursor solution containing PbI2 and SnI2 is reported. MASCN can not only tune the morphology of the perovskite film but also stabilize the precursor solution via retarding the oxidation of Sn2+ through a strong coordination between SCN? and Sn2+. The Sn/Pb binary inverted PVSCs based on FAPb0.7Sn0.3I3 present a high fill factor of 0.79 and the best PCE of 16.26% in the case of 0.25 MASCN addition. The device fabrication producibility is also greatly improved due to the stabilized precursor solution with the aid of MASCN. The PCE of the device is almost independent of the storage time of the precursor solution within 124 d in the N2‐filled glove box. These results indicate that the precursor engineering with multifunctionality additive is an effective approach toward highly efficient and producible PVSCs for future commercialization.  相似文献   

2.
Narrow-bandgap mixed Pb-Sn perovskite solar cells (PSCs) have great feasibility for constructing efficient all-perovskite tandem solar cells, in combination with wide-bandgap lead halide PSCs. However, the power conversion efficiency of mixed Pb-Sn PSCs still lags behind lead-based counterparts. Here, additive engineering using ionic imidazolium tetrafluoroborate (IMBF4) is proposed, where the imidazolium (IM) cation and tetrafluoroborate (BF4) anion efficiently passivate defects at grain boundaries and improve crystallinity, simultaneously relaxing lattice strain, respectively. Defect passivation is achieved by the chemical interaction between the IM cation and the positively charged under-coordinated Pb2+ or Sn2+ ions, and lattice strain relaxation is realized by lattice expansion with the intercalation of BF4 anions into the perovskite lattice. As a result, the synergistic effects of the cation and anion in the IMBF4 additive greatly enhance the optoelectronic performance of half-mixed Pb-Sn perovskites, leading to much longer carrier lifetimes. The best-performing half-mixed Pb-Sn PSC shows an efficiency above 19% with negligible hysteresis, while retaining over 90% of its initial efficiency after 1000 h in a nitrogen-filled glovebox and showing a lifetime to 80% degradation of 53.5 h under continuous illumination.  相似文献   

3.
Solar cells based on mixed organic–inorganic halide perovskites are promising photovoltaic technologies with low‐cost and fantastic power conversion efficiency (PCE). Enhancing the nucleation and regulating the crystallization rate of perovskite films and improving the bendability of brittle hybrid grains are crucial to improving the photovoltaic performance of flexible perovskite solar cells (PVSCs). Here, a simple approach is first introduced for fabricating perovskite films with full coverage and larger crystalline size by incorporating the elastomer polyurethane (PU) into the perovskite precursor solution to both retard the crystallization rate and improve the bendability. Shiny, smooth perovskite films are obtained with compact, micrometer‐sized crystalline grains that exhibit excellent photoelectric performances. The PVSCs fabricated by incorporating PU into the perovskite precursor offer an impressive PCE of 18.7% with almost no photocurrent hysteresis and excellent stability in ambient air. More importantly, the elastomer PU additive crosslinks the grain boundaries between neighboring perovskite crystals to form a PU network that effectively improves the bendability of the perovskite films.  相似文献   

4.
Perovskite solar cells (PVSCs) are promising photovoltaic technologies for realizing power sources with outstanding power conversion efficiency (PCE) and low‐cost properties. However, the extraordinary photovoltaic performance can be maximized only if an extremely stabilized device structure is developed. Here, a novel glued poly(ethylene‐co‐vinyl acetate) (EVA) interfacial layer is introduced to fabricate highly efficient and stable PVSCs with excellent waterproofness and flexibility. This strategy can effectively passivate the perovskite surface, reduce defect density, and balance charge transfer, which leads to a champion PCE of 19.31% for a 0.1 cm2 device and 11.73% for a 25 cm2 solar module. More importantly, the formation of a glued EVA thin layer on the surface of perovskite can inhibit ionic migration to the Ag electrode, form favorable interfacial contact and adhesive interaction with the perovskite/[6,6]‐phenyl‐C61‐butyric acid methyl ester to sustain mechanical bending, and produce significant waterproofness from moisture invasion, thus facilitating improvement in the operational stability of the PVSCs. The EVA‐treated PVSCs exhibit superior PCE values of 15.12% for a flexible device (0.1 cm2) and 8.95% for a flexible module (25 cm2), as well as over 85% retention after 5000 bending cycles, which opens up a new strategy for the practical application of PVSCs in portable and wearable electronics.  相似文献   

5.
Despite the rapid developments are achieved for perovskite solar cells (PSCs), the existence of various defects in the devices still limits the further enhancement of the power conversion efficiency (PCE) and the long-term stability of devices. Herein, the efficient organic potassium salt (OPS) of para-halogenated phenyl trifluoroborates is presented as the precursor additives to improve the performance of PSCs. Studies have shown that the 4-chlorophenyltrifluoroborate potassium salt (4-ClPTFBK) exhibits the most effective interaction with the perovskite lattice. Strong coordination between  BF3/halogen in anion and uncoordinated Pb2+/halide vacancies, along with the hydrogen bond between F in  BF3 and H in FA+ are observed. Thus, due to the synergistic contribution of the potassium and anionic groups, the high-quality perovskite film with large grain size and low defect density is achieved. As a result, the optimal devices show an enhanced efficiency of 24.50%, much higher than that of the control device (22.63%). Furthermore, the unencapsulated devices present remarkable thermal and long-term stability, maintaining 86% of the initial PCE after thermal test at 80 °C for 1000 h and 95% after storage in the air for 2460 h.  相似文献   

6.
Inexpensive metal Al is scarcely utilized as the cathode in the perovskite solar cells (PVSCs) because its violent reaction with perovskite active layer results in poor device stability in air. It is urgent to improve the efficiency and stability of PVSCs with Al as the cathode for mass production of low-cost PVSCs. Herein, a novel solution-processed cathode interlayer material, surfactant-encapsulated polyoxometalate complex [(C8H17)4N]4[SiW12O40] (TOASiW12) is reported. Using TOASiW12-modified Al as the cathode, the power conversion efficiency (PCE) of 20.64% has been achieved in the inverted PVSCs. The findings demonstrate that a thin TOASiW12 layer can effectively obstruct the chemical reaction between Al and perovskite layer, and significantly enhance the device stability. The unencapsulated devices with TOASiW12-modified Al retain more than 80% of the initial PCE after 350 h storage in the ambient atmosphere at 45% relative humidity. This study provides an excellent alternative cathode interlayer material for efficient and stable inverted PVSCs.  相似文献   

7.
With the impressive record power conversion efficiency (PCE) of perovskite solar cells exceeding 23%, research focus now shifts onto issues closely related to commercialization. One of the critical hurdles is to minimize the cell‐to‐module PCE loss while the device is being developed on a large scale. Since a solution‐based spin‐coating process is limited to scalability, establishment of a scalable deposition process of perovskite layers is a prerequisite for large‐area perovskite solar modules. Herein, this paper reports on the recent progress of large‐area perovskite solar cells. A deeper understanding of the crystallization of perovskite films is indeed essential for large‐area perovskite film formation. Various large‐area coating methods are proposed including blade, slot‐die, evaporation, and post‐treatment, where blade‐coating and gas post‐treatment have so far demonstrated better PCEs for an area larger than 10 cm2. However, PCE loss rate is estimated to be 1.4 × 10?2% cm?2, which is 82 and 3.5 times higher than crystalline Si (1.7 × 10?4% cm?2) and thin film technologies (≈4 × 10?3% cm?2) respectively. Therefore, minimizing PCE loss upon scaling‐up is expected to lead to PCE over 20% in case of cell efficiency of >23%.  相似文献   

8.
The two‐step conversion process consisting of metal halide deposition followed by conversion to hybrid perovskite has been successfully applied toward producing high‐quality solar cells of the archetypal MAPbI3 hybrid perovskite, but the conversion of other halide perovskites, such as the lower bandgap FAPbI3, is more challenging and tends to be hampered by the formation of hexagonal nonperovskite polymorph of FAPbI3, requiring Cs addition and/or extensive thermal annealing. Here, an efficient room‐temperature conversion route of PbI2 into the α‐FAPbI3 perovskite phase without the use of cesium is demonstrated. Using in situ grazing incidence wide‐angle X‐ray scattering (GIWAXS) and quartz crystal microbalance with dissipation (QCM‐D), the conversion behaviors of the PbI2 precursor from its different states are compared. α‐FAPbI3 forms spontaneously and efficiently at room temperature from P2 (ordered solvated polymorphs with DMF) without hexagonal phase formation and leads to complete conversion after thermal annealing. The average power conversion efficiency (PCE) of the fabricated solar cells is greatly improved from 16.0(±0.32)% (conversion from annealed PbI2) to 17.23(±0.28)% (from solvated PbI2) with a champion device PCE > 18% due to reduction of carrier recombination rate. This work provides new design rules toward the room‐temperature phase transformation and processing of hybrid perovskite films based on FA+ cation without the need for Cs+ or mixed halide formulation.  相似文献   

9.
The fabrication of high‐quality cesium (Cs)/formamidinium (FA) double‐cation perovskite films through a two‐step interdiffusion method is reported. Csx FA1‐x PbI3‐y(1‐x )Bry(1‐x ) films with different compositions are achieved by controlling the amount of CsI and formamidinium bromide (FABr) in the respective precursor solutions. The effects of incorporating Cs+ and Br? on the properties of the resulting perovskite films and on the performance of the corresponding perovskite solar cells are systematically studied. Small area perovskite solar cells with a power conversion efficiency (PCE) of 19.3% and a perovskite module (4 cm2) with an aperture PCE of 16.4%, using the Cs/FA double cation perovskite made with 10 mol% CsI and 15 mol% FABr (Cs0.1FA0.9PbI2.865Br0.135) are achieved. The Cs/FA double cation perovskites show negligible degradation after annealing at 85 °C for 336 h, outperforming the perovskite materials containing methylammonium (MA).  相似文献   

10.
The grain boundaries (GBs)/surface defects within perovskite film directly impede the further improvement of photoelectric conversion efficiency (PCE) and stability of planar perovskite solar cells (PSCs). Herein, 3D phytic acid (PA) and phytic acid dipotassium (PAD) with polydentate are explored to synchronously passivate the defects of perovskite absorber directly in multiple spatial directions. The strong electron-donating groups ( H2PO4) in the PA molecule afford six anchor sites to bind firmly with uncoordinated Pb2+ at the GBs/surface and modulate perovskite crystallization, thus enhancing the quality of perovskite film. Particularly, PAD containing an additional (K→PO) push–pull structure promotes the dominant coordination of phosphate group (PO) with Pb2+ and passivates halide anion defects due to the complexation of potassium ions (K+) with iodide ions (I-). Consequently, the PAD-complexed PSCs deliver a champion PCE of 23.18%, which is remarkably higher than that of the control device (19.94%). Meanwhile, PAD-complexed PSCs exhibit superior moisture and thermal stability, remaining 79% of their initial PCE after 1000 h under continuous illumination, while the control device remain only 48% of their PCE after 1000 h. This work provides important insights into designing multifunctional 3D passivators for the purpose of simultaneously enhancing the efficiency and stability of devices.  相似文献   

11.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   

12.
High density of defects at interface severely affects the performance of perovskite solar cells (PSCs). Herein, cobalt (II) hexafluoro-2,4-pentanedionat (CoFAc), a hinge-type fluorine-rich complex, is introduced onto the surface of formamidinium cesium lead iodide (FACsPbI3) film to address the issues of perovskite/Spiro-OMeTAD interface. The existence of CoFAc passivates both organic cation and halide anion vacancies by establishing powerful hydrogen bonds with HC(NH2)2+ (FA+) and strong ionic bonds with Pb2+ in perovskite films. In addition, CoFAc serves as a connecting link to enhance interfacial hole-transport kinetics via interacting with Spiro-OMeTAD. Consequently, FACsPbI3 PSCs with CoFAc modification display a champion power conversion efficiency (PCE) of 24.64% with a charming open-circuit voltage (VOC) of 1.191 V, which is the record VOC among all the reported organic-inorganic hybrid PSCs with TiO2 as electron transport layer. Furthermore, CoFAc-modified devices exhibit an outstanding long-term stability, which can maintain 95% of their initial PCEs after exposure to ambient atmosphere for 1500 h without any encapsulation.  相似文献   

13.
The poor interface quality between nickel oxide (NiOx) and halide perovskites limits the performance and stability of NiOx-based perovskite solar cells (PSCs). Here a reactive surface modification approach based on the in situ decomposition of urea on the NiOx surface is reported. The pyrolysis of urea can reduce the high-valence state of nickel and replace the adsorbed hydroxyl group with isocyanate. Combining theoretical and experimental analyses, the treated NiOx films present suppressed surface states and improved transport energy level alignment with the halide perovskite absorber. With this strategy, NiOx-based PSCs achieve a champion power conversion efficiency (PCE) of 23.61% and a fill factor of over 86%. The device's efficiency remains above 90% after 2000 h of thermal aging at 85 °C. Furthermore, perovskite solar modules achieve PCE values of 18.97% and 17.18% for areas of 16 and 196 cm2, respectively.  相似文献   

14.
The electron transport layer (ETL) plays a crucial part in extracting electron carriers while optimizing the interfacial contact of perovskite/electrode in planar heterojunction perovskite solar cells (PVSCs). Despite various ETLs being designed for efficient PVSCs, there exists hardly any research on the effect of molecular stacking order on device performance. Herein, poly(ethylene-co-vinyl acetate) (EVA) is employed as the [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) solution additive. The strong binding energy between EVA with PC61BM promotes the molecular stacking order of ETLs, which alleviates the morphology inhomogeneity, possesses a matched energy level, blocks ion migration, and improves the water–oxygen barrier of perovskite devices. The blade-coated MAPbI3-based PVSCs achieve a power conversion efficiency (PCE) of 19.32% with positive reproducibility and negligible hysteresis, as well as maintain 90% and 80% of the initial PCE after storage under inert and ambient conditions (52% humidity) for 1500 h without encapsulation. This strategy also improves the champion PCE of CsFAMA-based PVSCs to 20.33%. These findings demonstrate that the regulation of molecular stacking order is a valid approach to optimize interfacial charge-carrier recombination in PVSCs, which meet the demand for high-performance ETL in large-area PVSCs and improve the upscaling of the fabrication technology toward practical applications.  相似文献   

15.
Halide substitution in phenethylammonium spacer cations (X-PEA+, X  = F, Cl, Br) is a facile strategy to improve the performance of PEA based perovskite solar cells (PSCs). However, the power conversion efficiency (PCE) of X-PEA based quasi-2D (Q-2D) PSCs is still unsatisfactory and the underlying mechanisms are in debate. Here, the in-depth study on the impact of halide substitution on the crystal orientation and multi-phase distribution in PEA based perovskite films are reported. The halide substitution eliminates n  =  1 2D perovskite and thus leads to the perpendicular crystal orientation. Furthermore, nucleation competition exists between small-n and large-n phases in PEA and X-PEA based perovskites. This gives rise to the orderly distribution of different n-phases in the PEA and F-PEA based films, and random distribution in Cl-PEA and Br-PEA based films. As a result, (F-PEA)2MA3Pb4I12 (MA = CH3NH3+, n = 4) based PSCs achieve a PCE of 18.10%, significantly higher than those of PEA (12.23%), Cl-PEA (7.93%) and Br-PEA (6.08%) based PSCs. Moreover, the F-PEA based devices exhibit remarkably improved stability compared to their 3D counterparts.  相似文献   

16.
Recently, there have been extensive research efforts on developing high performance organolead halide based perovskite solar cells. While most studies focused on optimizing the deposition processes of the perovskite films, the selection of the precursors has been rather limited to the lead halide/methylammonium (or formamidium) halide combination. In this work, we developed a new precursor, HPbI3, to replace lead halide. The new precursor enables formation of highly uniform formamidium lead iodide (FAPbI3) films through a one‐step spin‐coating process. Furthermore, the FAPbI3 perovskite films exhibit a highly crystalline phase with strong (110) preferred orientation and excellent thermal stability. The planar heterojunction solar cells based on these perovskite films exhibit an average efficiency of 15.4% and champion efficiency of 17.5% under AM 1.5 G illumination. By comparing the morphology and formation process of the perovskite films fabricated from the formamidium iodide (FAI)/HPbI3, FAI/PbI2, and FAI/PbI2 with HI additive precursor combinations, it is shown that the superior property of the HPbI3 based perovskite films may originate from 1) a slow crystallization process involving exchange of H+ and FA+ ions in the PbI6 octahedral framework and 2) elimination of water in the precursor solution state.  相似文献   

17.
Rough dense sol-gel-derived titanium dioxide (TiO2) electron-transport layers (ETLs) and smooth organolead halide perovskite (PVK) films for pseudo-planar heterojunction perovskite solar cells (P-PH PVKSCs) were fabricated by a facile one-step dip-coating method. The highly compact TiO2 ETLs and uniform PVK films endow the device a high power conversion efficiency (PCE) of over 11%, which was nearly identical to that of a reference device (12%) fabricated by conventional spin-coating. Furthermore, the device showed no pronounced hysteresis when tested by scanning the voltage in a forward and backward direction, showing the potential of facile and waste-free dip-coating in replacing of spin-coating for large area perovskite solar cells preparation. Lastly, the hysteresis was compared and discussed and models regarding the abnormal hysteresis, roll-over and current peak phenomena were proposed as well.  相似文献   

18.
Highly efficient planar heterojunction perovskite solar cells (PVSCs) with dopamine (DA) semiquinone radical modified poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) (DA‐PEDOT:PSS) as a hole transporting layer (HTL) were fabricated. A combination of characterization techniques were employed to investigate the effects of DA doping on the electron donating capability of DA‐PEDOT:PSS, perovskite film quality and charge recombination kinetics in the solar cells. Our study shows that DA doping endows the DA‐PEDOT:PSS‐modified PVSCs with a higher radical content and greater perovskite to HTL charge extraction capability. In addition, the DA doping also improves work function of the HTL, increases perovskite film crystallinity, and the amino and hydroxyl groups in DA can interact with the undercoordinated Pb atoms on the perovskite crystal, reducing charge‐recombination rate and increasing charge‐extraction efficiency. Therefore, the DA‐PEDOT:PSS‐modified solar cells outperform those based on PEDOT:PSS, increasing open‐circuit voltage (V oc) and power conversion efficiency (PCE) to 1.08 V and 18.5%, respectively. Even more importantly, the efficiency of the unencapsulated DA‐PEDOT:PSS‐based PVSCs are well retained with only 20% PCE loss after exposure to air for 250 hours. These in‐depth insights into structure and performance provide clear and novel guidelines for the design of effective HTLs to facilitate the practical application of inverted planar heterojunction PVSCs.  相似文献   

19.
A fully automated spray‐coated technology with ultrathin‐film purification is exploited for the commercial large‐scale solution‐based processing of colloidal inorganic perovskite CsPbI3 quantum dot (QD) films toward solar cells. This process is in the air outside the glove box. To further improve the performance of QD solar cells, the short‐chain ligand of phenyltrimethylammonium bromide (PTABr) with a benzene group is introduced to partially substitute for the original long‐chain ligands of the colloidal QD surface (namely PTABr‐CsPbI3). This process not only enhances the carrier charge mobility within the QD film due to shortening length between adjacent QDs, but also passivates the halide vacancy defects of QD by Br? from PTABr. The colloidal QD solar cells show a power conversion efficiency (PCE) of 11.2% with an open voltage of 1.11 V, a short current density of 14.4 mA cm?2, and a fill factor of 0.70. Due to the hydrophobic surface chemistry of the PTABr–CsPbI3 film, the solar cell can maintain 80% of the initial PCE in ambient conditions for one month without any encapsulation. Such a low‐cost and efficient spray‐coating technology also offers an avenue to the film fabrication of colloidal nanocrystals for electronic devices.  相似文献   

20.
Low‐temperature‐processed inverted perovskite solar cells (PVSCs) attract increasing attention because they can be fabricated on both rigid and flexible substrates. For these devices, hole‐transporting layers (HTLs) play an important role in achieving efficient and stable inverted PVSCs by adjusting the anodic work function, hole extraction, and interfacial charge recombination. Here, the use of a low‐temperature (≤150 °C) solution‐processed ultrathin film of poly[(9,9‐dioctyl‐fluorenyl‐2,7‐diyl)‐co‐(4,4′‐(N‐(4‐secbutylphenyl) diphenylamine)] (TFB) is reported as an HTL in one‐step‐processed CH3NH3PbI3 (MAPbI3)‐based inverted PVSCs. The fabricated device exhibits power conversion efficiency (PCE) as high as 20.2% when measured under AM 1.5 G illumination. This PCE makes them one of the MAPbI3‐based inverted PVSCs that have the highest efficiency reported to date. Moreover, this inverted PVSC also shows good stability, which can retain 90% of its original efficiency after 30 days of storage in ambient air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号