首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The diagnosis of liver diseases is generally carried out via ultrasound imaging, computed tomography, and magnetic resonance imaging. The emerging photoacoustic imaging is an attractive alternative to diagnose even early stage of liver diseases providing high‐resolution anatomical and functional information in deep tissue noninvasively. However, the liver has insufficient photoacoustic contrast due to low optical absorbance in the near‐infrared windows. Here, a new hyaluronate–silica nanoparticle (HA–SiNP) conjugate for liver‐specific delivery and imaging for the diagnosis of liver diseases is developed. The HA–SiNP conjugates show high liver‐specific targeting efficiency, strong optical absorbance near‐infrared windows, excellent biocompatibility, and biodegradability. The liver‐specific targeting efficiency is verified by in vitro cellular uptake test, and in vivo and ex vivo photoacoustic imaging. In vivo photoacoustic imaging shows that photoacoustic amplitude in the liver injected with HA–SiNP conjugates is 4.4 times higher than that of the liver injected with SiNP. The biocompatibility and biodegradability of HA–SiNP conjugates are verified by cell viability test, optical spectrum analysis of urine, and inductively coupled plasma‐mass spectroscopy (ICP‐MS) analysis. Taken together, HA–SiNP conjugates may be developed as a promising liver targeted photoacoustic imaging contrast agent and liver‐targeted drug delivery agent.  相似文献   

2.
Amphiphilic in nature, lipids spontaneously self‐assemble into a range of nanostructures in the presence of water. Among lipid self‐assembled structures, liposomes and supported lipid bilayers have long held scientific interest for their main applications in drug delivery and plasma membrane models, respectively. In contrast, lipid‐based multilayered membranes on solid supports only recently begin drawing scientists' attention. Current studies show that the stacking of multiple bilayers on a solid support yields cooperative structural and dynamic behavior that enables new functionalities. Lipid films provide compartmentalization, templating, and enhanced release of molecules of interest. Importantly, supported lipid phases exhibit long‐range periodic nanoscale order and orientation that is tunable in response to a changing environment. Herein, the current understanding of lipid‐based film research is summarized focusing on how unique structural characteristics enable the emergence of new applications including label‐free biosensors, macroscale drug delivery, and substrate‐mediated gene delivery. The authors' recent contributions focusing on the structural characterization of lipid‐based films using small‐angle X‐ray scattering and atomic force microscopy are highlighted. In addition, new photothermally induced resonance and solid‐state nuclear magnetic resonance data are described, providing insights into drug partition in lipid‐based films as well as structure and dynamics at the molecular scale.  相似文献   

3.
Multidrug resistance (MDR) is a main cause of chemotherapy failure in cancer treatment. It is associated with complex cellular and molecular mechanisms including overexpression of drug efflux transporters, increased membrane rigidity, and impaired apoptosis. Numerous efforts have been made to overcome efflux transporter‐mediated MDR using nanotechnology‐based approaches. However, these approaches fail to surmount plasma membrane rigidity that attenuates drug penetration and nanoparticle endocytosis. Here, a “one‐two punch” nanoparticle approach is proposed to coordinate intracellular biointeraction and bioreaction of a nanocarrier material docosahexaenoic acid (DHA) and an anticancer prodrug mitomycin C (MMC) to enhance mitochondrion‐targeted toxicity. Incorporation of DHA in solid polymer‐lipid nanoparticles first reduces the membrane rigidity in live cancer cells thereby increasing nanoparticle cellular uptake and MMC accumulation. Subsequent intracellular MMC bioreduction produces free radicals that in turn react with adjacent DHA inducing significantly elevated mitochondrial lipid peroxidation, leading to irreversible damage to mitochondria. Preferential tumor accumulation of the nanoparticles and the synergistic anticancer cytotoxicity remarkably inhibit tumor growth and prolonged host survival without any systemic toxicity in an orthotopic MDR breast tumor model. This work suggests that combinatorial use of biophysical and biochemical properties of nanocarrier materials with bioreactive prodrugs is a powerful approach to overcoming multifactorial MDR in cancer.  相似文献   

4.
Zwitterionic polymers demonstrate as a class of antifouling materials with long blood circulation in living subjects. Despite extensive research on their antifouling abilities, the responsive zwitterionic polymers that can change their properties by mild outside signals are poorly explored. Herein, a sulfamide‐based zwitterionic monomer is developed and used to synthesize a series of polysulfamide‐based (poly (2‐((2‐(methacryloyloxy)ethyl) dimethylammonio)acetyl) (phenylsulfonyl) amide (PMEDAPA)) nanogels as drug carriers for effective cancer therapy. PMEDAPA nanogels are proved to exhibit prolonged blood circulation without inducing the accelerated blood clearance phenomenon. Intriguingly, PMEDAPA nanogels can sensitively respond to hyperthermia by adjusting the crosslinker degree. After modified with transferrin (Tf), the nanogels (PMEDAPA‐Tf) achieve shielded tumor targeting at normothermia, while exhibiting recovered tumor targeting at hyperthermia, leading to enhanced tumor accumulation. Meanwhile, PMEDAPA‐Tf nanogels show superior penetration ability in 3D tumor spheroids and faster drug release at hyperthermia compared with that at normothermia. In combination with mild microwave heating (≈41 °C), the drug‐loaded PMEDAPA‐Tf nanogels show a pronounced tumor inhibition effect in a humanized orthotropic liver cancer model. Therefore, the study provides a novel hyperthermia‐responsive zwitterionic nanogel that can achieve augmented tumor accumulation and on‐demand drug release assisted with clinically used microwave heating for cancer therapy.  相似文献   

5.
6.
Gene therapy scientists have developed expression systems for therapeutic transgenes within patients, which must be seamlessly integrated into the patient's physiology by developing sophisticated control mechanisms to titrate expression levels of the transgenes into the therapeutic window. However, despite these efforts, gene‐based medicine still faces security concerns related to the administration of the therapeutic transgene vector. Here, molecular tools developed for therapeutic transgene expression can readily be transferred to materials science to design a humanized drug depot that can be implanted into mice and enables the trigger‐inducible release of a therapeutic protein in response to a small‐molecule inducer. The drug depot is constructed by embedding the vascular endothelial growth factor (VEGF121) as model therapeutic protein into a hydrogel consisting of linear polyacrylamide crosslinked with a homodimeric variant of the human FK‐binding protein 12 (FM), originally developed for gene therapeutic applications, as well as with dimethylsuberimidate. Administrating increasing concentrations of the inducer molecule FK506 triggers the dissociation of FM thereby loosening the hydrogel structure and releasing the VEGF121 payload in a dose‐adjustable manner. Subcutaneous implantation of the drug depot into mice and subsequent administration of the inducer by injection or by oral intake triggers the release of VEGF121 as monitored in the mouse serum. This study is the first demonstration of a stimuli‐responsive hydrogel that can be used in mammals to release a therapeutic protein on demand by the application of a small‐molecule stimulus. This trigger‐inducible release is a starting point for the further development of externally controlled drug depots for patient‐compliant administration of biopharmaceuticals.  相似文献   

7.
A major bottleneck in nanometer‐scale drug delivery systems is the fabrication of nanocarriers with excellent stability under physiological conditions that can both efficiently encapsulate therapeutic agents and controllably release their payloads. Herein, the formation of a novel nanocomposite based on the encapsulation of thermally hydrocarbonized porous silicon (THCPSi) nanoparticles with solid lipid nanoparticles (SLNs) on a 1:1 ratio is described. The THCPSi‐SL nanocomposites (THCPSi‐SLNCs) are formed using a solid‐in‐oil‐in‐water emulsion solvent evaporation method. TEM and FTIR analyses prove that THCPSi nanoparticles are successfully encapsulated in the SLN matrix. The formation of the THCPSi‐SLNCs alters the surface smoothness and hydrophobicity of the THCPSi nanoparticles, and also remarkably enhances their stability in human plasma. After encapsulation, the cytocompatibility of the THCPSi nanoparticles with intestinal, liver, and macrophage cancer cells is also greatly improved. A prolonged release of the model drug, furosemide, from THCPSi‐SLNC is achieved, indicating that the SLN matrix successfully seals the pores of the THCPSi nanoparticles. Flow cytometry and confocal fluorescence microscopy studies demonstrates the significantly reduced cellular association of THCPSi‐SLNCs with the cells comparing to bare THCPSi nanoparticles. Overall, the THCPSi‐SLNCs exhibits superior suspensibility and better stability against aggregation in aqueous buffer solutions, increases the particle surface smoothness and cytocompatibility, reduces the cellular association, increases the in vitro stability in human plasma, and prolonges the drug release. These results suggest that the nanocomposite is a promising nanovector system for drug delivery applications.  相似文献   

8.
Some theranostic nanoparticle (NP) drug delivery systems are capable of measuring drug release rates in situ. This can provide quantitative information regarding drug biodistribution, and drug dose that is delivered to cells or tissues. Here, X‐ray excited optical luminescent (XEOL) NPs coated with poly(glycolide)‐poly(ethylene glycol) (XGP) are used measure the amount of drug released into cells. The photoactive drug protoporphyrin IX (PpIX) is loaded into XGP and is able to attenuate the XEOL NP emission. Measuring an increase in XEOL intensity as PpIX is released enables the measurement of drug release into glioblastoma cells (GBM). Biodistribution studies in a BALB/c mouse GBM intracranial xenograft model show significant XGP accumulation at the site of the GBM xenograft within the brain, and not in adjacent healthy brain tissues. There is no uptake of XGP in the heart or kidneys, the primary organs associated with drug and gadolinium ion toxicity. NP toxicity is tested with U‐138MG GBM in vitro, and NPs show low cytotoxicity at concentrations of 100 μg/mL. In vivo dose escalation studies in BALB/c mice show no adverse effects at doses up to 75 mg/kg. These theranostic NPs offer an approach to quantitatively measure drug release into cells.  相似文献   

9.
Oral insulin therapy that targets the liver and further mimics glucose‐responsive secretion holds promise for correcting defects in glucose metabolism caused by peripheral delivery. This work describes the construction of polymersomes (Pep‐PMS), which are composed of glucose‐responsive polymers decorated with peptides that readily bind to the ganglioside‐monosialic acid (GM1) receptor in the intestinal epithelium. Pep‐PMS are efficiently transported across the intestinal epithelium through GM1‐mediated transcytosis, leading to their abundant accumulation in the liver. Moreover, Pep‐PMS can efficiently encapsulate insulin in euglycemia and release them in hyperglycemia. Under hyperglycemic conditions, the Pep‐PMS dissociate to release the encapsulated insulin in response to glucose oxidase (GOx)‐induced H2O2. Surprisingly, the postprandial blood glucose levels of diabetic rats treated with Pep‐PMS can be maintained even after being challenged by glucose administration. Hepatic glucose uptake and glycogen production are also elevated after treating diabetic rats with Pep‐PMS, which is similar to glucose utilization in normal rats. Oral delivery systems that target the liver and serve as a reservoir for glucose‐responsive insulin secretion may improve the therapeutic effect in people with diabetes.  相似文献   

10.
Microfluidic 3D cell culture is a promising technology for the screening of drug toxicity profiles. In this study, a bioartificial liver consisting of a surface‐engineered microfluidic silicon chip with microtrenches mimicking hepatic sinusoids is shown to extend 3D primary hepatocyte culture and improve in vitro drug screening for hepatotoxicity, with respect to the state‐of‐the‐art literature on this subject. Primary hepatocytes hosted in the 3D heparin‐coated microtrenches (the bioartificial liver) secrete high levels of albumin and urea over 4 weeks. The cytotoxicity of common drugs, namely, acetaminophen, chlorpromazine, and tacrine, was assessed on primary hepatocytes both at day 1 and day 7. The results suggest that mimicking hepatic sinusoids using a microtrench format allows the maintenance of difficult‐to‐culture primary hepatocytes to be extended to 4 weeks and provides an alternative model to animal studies for the screening of the cytotoxicity of new drugs.  相似文献   

11.
Drug screening with simplified 2D cell culture and relevant animal testing fail to predict clinical outcomes. With the rising cost of drug development, predictive 3D tissue models with human cells are in urgent demand. Establishing vascular perfusion of 3D tissues has always been a challenge, but it is necessary to mimic drug transport and to capture complex interorgan crosstalk. Here, a versatile multiwell plate is presented empowered by built‐in microfabricated vascular scaffolds that define the vascular space and support self‐assembly of various parenchymal tissues. In this configuration, assembly and organ‐specific function of a metabolically active liver, a free‐contracting cardiac muscle, and a metastatic solid tumor are demonstrated, tracking organ function using noninvasive analysis techniques. By linking the 3D tumor and the liver tissue in series, it is demonstrated that the presence of liver tissue is crucial to correctly reveal the efficacy of a chemotherapeutic drug, Tegafur. Furthermore, the complete cancer metastasis cascade is demonstrated across multiple organs, where cancer cells escaping from the solid tumor can invade a distant liver tissue connected through a continuous vascular interface. This combinatory use of microfabricated scaffold onto a standard cell culturing platform can offer important insights into the mechanics of complex interorgan biological events.  相似文献   

12.
The liver contains intricate immunological mechanisms, capable of inducing both immune activation and suppression for the maintenance of a homeostatic immune environment. From an immunological point of view, chronic liver disease is indeed a result of the imbalance of pro‐ and anti‐inflammatory responses. Therefore, application of immunotherapy in liver diseases is logical and contains a huge potential for future development. Despite rapid advances in immunotherapy, research at the interdisciplinary interface of immunology and material science is important for further enhancement of immunotherapeutic efficiency and reduction of side effects. Moreover, the liver is particularly suitable for the application of nanomaterial‐based immunotherapy due to its biological filtration function to sequester a majority of administrated nanoparticles from systemic circulation. Here, an insight of advanced liver diseases and how liver cells exert their immune functions in the diseased liver is summarized first to provide basic principles for therapeutic application, followed by an overview of the latest studies on nanomaterial‐based immunotherapy for liver diseases.  相似文献   

13.
Selenocysteine (Sec) is a primary kind of reactive selenium species in cells whose antioxidant roles in a series of liver diseases have been featured. However, it is difficult to determine Sec in living cells and in vivo due to its high reactivity and instability. This work reports a ratiometric near‐infrared fluorescent probe (Cy‐SS) for qualitative and quantitative determination of Sec in living cells and in vivo. The probe is composed of heptamethine cyanine fluorophore, the response unit bis(2‐hydroxyethyl) disulfide, and the liver‐targeting moiety d ‐galactose. Based on a detection mechanism of selenium–sulfur exchange reaction, the concentrations of Sec in HepG2, HL‐7702 cells, and primary mouse hepatocytes is determined as 3.08 ± 0.11 × 10?6m , 4.03 ± 0.16 × 10?6m and 4.34 ± 0.30 × 10?6m , respectively. The probe can selectively accumulate in liver. The ratio fluorescence signal of the probe can be employed to quantitatively analyze the fluctuation of Sec concentrations in cells and mice models of acute hepatitis. The experimental results demonstrate that Sec plays important antioxidant and anti‐inflammatory roles during inflammatory process. And the levels of intracellular Sec have a close relationship with the degree of liver inflammation. The above imaging detections make this new probe a potential candidate for the accurate diagnosis of inflammation.  相似文献   

14.
As biochemical and functional studies of membrane protein remain a challenge, there is growing interest in the application of nanotechnology to solve the difficulties of developing membrane protein therapeutics. Exosome, composed of lipid bilayer enclosed nanosized extracellular vesicles, is a successful platform for providing a native membrane composition. This study reports an enzymatic exosome, which harbors native PH20 hyaluronidase (Exo‐PH20), which is able to penetrate deeply into tumor foci via hyaluronan degradation, allowing tumor growth inhibition and increased T cell infiltration into the tumor. This exosome‐based strategy is developed to overcome the immunosuppressive and anticancer therapy‐resistant tumor microenvironment, which is characterized by an overly accumulated extracellular matrix. Notably, this engineered exosome with the native glycosylphosphatidylinositol‐anchored form of hyaluronidase has a higher enzymatic activity than a truncated form of the recombinant protein. In addition, the exosome‐mediated codelivery of PH20 hyaluronidase and a chemotherapeutic (doxorubicin) efficiently inhibits tumor growth. This exosome is designed to degrade hyaluronan, thereby augmenting nanoparticle penetration and drug diffusion. The results thus show that this is a promising exosome‐based platform that harbors not only a membrane‐associated enzyme with high activity but also therapeutic payloads.  相似文献   

15.
Triggerable devices capable of on‐demand, controlled release of therapeutics are attractive options for the treatment of local diseases because of their potential to enhance therapeutic effectiveness with reduced systemic toxicity. Here, the design and fabrication of a miniaturized device, termed a microspouter, is described. This device is shown to provide active and precise control of localized delivery of drugs on demand. The microspouter is composed of a magnetic sponge to provide the force for drug release through magnetic field‐induced reversible deformation, a reservoir for the sponge installation and drug loading, and a soft membrane for sealing the device. Following application of a magnetic field to the microspouter, the shrinking of the sponge may trigger a spouting of drug through a membrane's microaperture. The efficiency of the device in controlling the dose and time course of drug release under different external magnetic fields has been demonstrated using methylene blue and docetaxel as model drugs. Additionally, the microspouter is found to have low background drug leakage that allows for tunable drug release in an ex vivo implantation experiment. All the results confirm the microspouter as a potential device for safe, long‐time, and controlled drug release in local disease treatment.  相似文献   

16.
The development of efficient gene delivery systems targeting the lung endothelium remains a serious challenge. This study reports on the design and optimization of a multifunctional envelope‐type nanodevice (MEND) for an efficient siRNA delivery to the lung endothelium based on GALA‐peptide targeting ability. The incorporation of a pH‐sensitive lipid (YSK05) results in a dramatic improvement in silencing efficiency by enhancing endosomal escape, but this also causes a reduction in the lung selectivity. Contrary to the assumption that active targeting is largely dependent on the presence of a targeting ligand, the findings of the present study indicate that nanocarrier composition is critical for achieving the organ selectivity. Interestingly, helper lipids substantially mask the liver delivery resulting in optimum lung targeting. The optimized YSK05‐MEND is 40‐fold more efficient than a previously developed MEND, with a robust lung endothelium gene knockdown at small doses. The YSK05‐MEND strongly inhibits a metastatic lung cancer model and exerts superior control over lung metastasis compared to chemotherapy or the previously developed MEND. The YSK05‐MEND is well‐tolerated in mice after acute or chronic administration. As far as it is known, YSK05‐MEND achieves the most efficient lung endothelium gene silencing reported thus far with a median effective dose of 0.01 mg siRNA kg?1 while minimally affecting the endothelium of other organs.  相似文献   

17.
A high concentration of cell‐free DNA (cfDNA) in joints is considered a disease causative agent of rheumatoid arthritis (RA) and cfDNA scavenging has been regarded as an efficient therapeutic avenue. Cationic polymers can hamper progression of joint inflammation in a rat model of RA by scavenging cfDNA; however, they may cause systemic toxicity due to the strong positive charges. To reduce the toxicity, herein a library of cationic nanoparticles (cNPs) of block copolymer micelles is developed and the effects of structure and surface composition on cNP efficacy to bind nucleic acids, toxicity, and therapeutic activity on a collagen induced arthritis (CIA) rat model of RA are assessed. The library includes cNPs with a homoshell from poly(lactic‐co‐glycolic acid)‐block‐poly(2‐(dimethylamino)ethyl methacrylate) (PLGA‐b‐PDMA) block copolymers and cNPs with a mixed shell of poly(ethylene glycol) (PEG) and PDMA by coself‐assembling PLGA‐b‐PDMA and PLGA‐b‐PEG block copolymers. Relatively to the homoshell cNPs, introduction of PEG segments translates into a lower DNA binding efficacy while preserving ability to hamper joint inflammation. Moreover, they show a greater accumulation and longer retention at the inflamed joints, allowing a lower administration frequency. In conclusion, this work shows that the therapeutic index of cationic materials can be tuned by introducing surface neutral moieties.  相似文献   

18.
Endothelial progenitor cells (EPCs) are a promising cell source for the treatment of several ischemic diseases for their potentials in neovascularization. However, the application of EPCs in cell‐based therapy has shown low therapeutic efficacy due to hostile tissue conditions after ischemia. In this study, a bio‐blood‐vessel (BBV) is developed, which is produced using a novel hybrid bioink (a mixture of vascular‐tissue‐derived decellularized extracellular matrix (VdECM) and alginate) and a versatile 3D coaxial cell printing method for delivering EPC and proangiogenic drugs (atorvastatin) to the ischemic injury sites. The hybrid bioink not only provides a favorable environment to promote the proliferation, differentiation, and neovascularization of EPCs but also enables a direct fabrication of tubular BBV. By controlling the printing parameters, the printing method allows to construct BBVs in desired dimensions, carrying both EPCs and atorvastatin‐loaded poly(lactic‐co‐glycolic) acid microspheres. The therapeutic efficacy of cell/drug‐laden BBVs is evaluated in an ischemia model at nude mouse hind limb, which exhibits enhanced survival and differentiation of EPCs, increased rate of neovascularization, and remarkable salvage of ischemic limbs. These outcomes suggest that the 3D‐printed ECM‐mediated cell/drug implantation can be a new therapeutic approach for the treatment of various ischemic diseases.  相似文献   

19.
Permanent and peripheral embolization is a requirement of embolic materials in the transcatheter arterial embolization of liver tumors. So far, it has been difficult to find materials that have both good flowability and high mechanical strength. In the present work, a temperature‐sensitive p(N ‐isopropylacrylamide‐co‐butyl methylacrylate) (PIB) nanogel is explored as a novel blood‐vessel‐embolic material in the interventional therapy of liver tumors. With increasing temperature, the PIB nanogel dispersion sequentially exhibits three phase states; swollen gel, flowable sol, and finally shrunken gel. Iohexol, a nonionic X‐ray contrast agent, increases the volume‐phase transition temperature of the PIB nanogel and decreases the critical gelation concentration. Angiographical and histological studies on the embolization in the liver arteries of VX2 tumor‐bearing rabbits indicate that the PIB nanogel dispersion mixed with iohexol (designated as PIB‐I‐6150) completely occludes all levels of blood vessels, including peripheral vessels. In addition, data on tumor volume, necrosis level, and the number of metastatic foci indicate that PIB‐I‐6150 has better peripheral embolization than Lipiodol. Experiments concerning cytotoxicity, hemolysis, histology, and liver function indicate that PIB‐I‐6150 has good biocompability.  相似文献   

20.
Chemotherapy resistance remains a large obstacle to successful clinical cancer therapy, mainly due to little accumulation and low sensitivity of drugs and the effective clinical strategy still lacks. Herein, a novel yet simple strategy to combat cancer drug resistance using the plasmonic feature‐based photothermal properties is reported. Rather than directly killing cancer cells using nanoparticle‐mediated hyperthermia, for the first time, localized plasmonic heating of gold nanorod at a mild laser power density can modulate the drug‐resistance related genes. This photothermal effect triggers higher expression of heat shock factor (HSF‐1) trimers and depresses the expression of P‐glycoprotein (Pgp) and mutant p53. In turn, both drug accumulation in the breast cancer resistant cells (MCF‐7/ADR) and their sensitiveness to drugs can be greatly enhanced. Considering the universality and feasibility of this strategy, it points out a new unique way to challenge drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号