首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
    
In recent decades, origami has been explored to aid in the design of engineering structures. These structures span multiple scales and have been demonstrated to be used toward various areas such as aerospace, metamaterial, biomedical, robotics, and architectural applications. Conventionally, origami or deployable structures have been actuated by hands, motors, or pneumatic actuators, which can result in heavy or bulky structures. On the other hand, active materials, which reconfigure in response to external stimulus, eliminate the need for external mechanical loads and bulky actuation systems. Thus, in recent years, active materials incorporated with deployable structures have shown promise for remote actuation of light weight, programmable origami. In this review, active materials such as shape memory polymers (SMPs) and alloys (SMAs), hydrogels, liquid crystal elastomers (LCEs), magnetic soft materials (MSMs), and covalent adaptable network (CAN) polymers, their actuation mechanisms, as well as how they have been utilized for active origami and where these structures are applicable is discussed. Additionally, the state-of-the-art fabrication methods to construct active origami are highlighted. The existing structural modeling strategies for origami, the constitutive models used to describe active materials, and the largest challenges and future directions for active origami research are summarized.  相似文献   

7.
本文概述了第六届国际材料的力学行为会议(ICM6),着重介绍了各国在新材料的力学行为研究中取得的最新成果,并讨论了它在新材料发展和应用中的重要作用。文章最后就如何加强我国在该领域的研究提出了几点建议。  相似文献   

8.
    
This paper addresses the overwhelming computational resources needed with standard numerical approaches to simulate architected materials. Those multiscale heterogeneous lattice structures gain intensive interest in conjunction with the improvement of additive manufacturing as they offer, among many others, excellent stiffness-to-weight ratios. We develop here a dedicated HPC solver that benefits from the specific nature of the underlying problem in order to drastically reduce the computational costs (memory and time) for the full fine-scale analysis of lattice structures. Our purpose is to take advantage of the natural domain decomposition into cells and, even more importantly, of the geometrical and mechanical similarities among cells. Our solver consists in a so-called inexact FETI-DP method where the local, cell-wise operators and solutions are approximated with reduced order modeling techniques. Instead of considering independently every cell, we end up with only few principal local problems to solve and make use of the corresponding principal cell-wise operators to approximate all the others. It results in a scalable algorithm that saves numerous local factorizations. Our solver is applied for the isogeometric analysis of lattices built by spline composition, which offers the opportunity to compute the reduced basis with macro-scale data, thereby making our method also multiscale and matrix-free. The solver is tested against various 2D and 3D analyses. It shows major gains compared to black-box solvers; in particular, problems of several millions of degrees of freedom can be solved with a simple computer within few minutes.  相似文献   

9.
10.
11.
    
Origami is the art of folding two‐dimensional (2D) materials, such as a flat sheet of paper, into complex and elaborate three‐dimensional (3D) objects. This study reports origami‐based metamaterials whose electromagnetic responses are dynamically controllable via switching the folding state of Miura‐ori split‐ring resonators. The deformation of the Miura‐ori unit along the third dimension induces net electric and magnetic dipoles of split‐ring resonators parallel or anti‐parallel to each other, leading to the strong chiral responses. Circular dichroism as high as 0.6 is experimentally observed while the chirality switching is realized by controlling the deformation direction and kinematics. In addition, the relative density of the origami metamaterials can be dramatically reduced to only 2% of that of the unfolded structure. These results open a new avenue toward lightweight, reconfigurable, and deployable metadevices with simultaneously customized electromagnetic and mechanical properties.  相似文献   

12.
13.
    
Historically, the creation of lightweight, yet mechanically robust, materials have been the most sought‐after engineering pursuit. For that purpose, research efforts are dedicated to finding pathways to emulate and mimic the resilience offered by natural biological systems (i.e., bone and wood). These natural systems evolved over time to provide the most attainable structural efficiency through their architectural characteristics that can span over multiple length scales. Nature‐inspired man‐made cellular metamaterials have effective properties that depend largely on their topology rather than composition and are hence remarkable candidates for a wide range of application. Despite their geometrical complexity, the fabrication of such metamaterials is made possible by the emergence of advanced fabrication techniques that permit the fabrication of complex architectures down to the nanometer scale. In this work, we report the fabrication and mechanical testing of nature‐inspired, mathematically created, micro‐architected, cellular metamaterials with topologies based on triply periodic minimal surfaces (TPMS) with cubic symmetries fabricated through direct laser writing two‐photon lithography. These TPMS‐based microlattices are sheet/shell‐ and strut‐based metamaterials with high geometrical complexity. Interestingly, results show that TPMS sheet‐based microlattices follow a stretching‐dominated mode of deformation, and further illustrate their mechanical superiority over the traditional and well‐known strut‐based microlattices and microlattice composites. The TPMS sheet‐based polymeric microlattices exhibited mechanical properties superior to other micrloattices comprising metal‐ and ceramic‐coated polymeric substrates and, interestingly, are less affected by the change in density, which opens the door for fabricating ultralightweight materials without much sacrificing mechanical properties.
  相似文献   

14.
15.
16.
17.
18.
19.
淀粉是一种来源广泛、价格低廉、可再生、可降解的生物大分子,其结构、性能和应用研究受到了人们关注。主要综述了近几年来增塑剂、相容剂、交联剂和增强剂对淀粉的改性及该类材料在医药、包装、阻燃等领域的应用与研究前景。  相似文献   

20.
    
The ability to create architected materials that possess both high stiffness and toughness remains an elusive goal, since these properties are often mutually exclusive. Natural materials, such as bone, overcome such limitations by combining different toughening mechanisms across multiple length scales. Here, a new method for creating architected lattices composed of core–shell struts that are both stiff and tough is reported. Specifically, these lattices contain orthotropic struts with flexible epoxy core–brittle epoxy shell motifs in the absence and presence of an elastomeric silicone interfacial layer, which are fabricated by a multicore–shell, 3D printing technique. It is found that architected lattices produced with a flexible core‐elastomeric interface‐brittle shell motif exhibit both high stiffness and toughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号