首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
One of the critical challenges to develop advanced lithium‐sulfur (Li‐S) batteries lies in exploring a high efficient stable sulfur cathode with robust conductive framework and high sulfur loading. Herein, a 3D flexible multifunctional hybrid is rationally constructed consisting of nitrogen‐doped carbon foam@CNTs decorated with ultrafine MgO nanoparticles for the use as advanced current collector. The dense carbon nanotubes uniformly wrapped on the carbon foam skeletons enhance the flexibility and build an interconnected conductive network for rapid ionic/electronic transport. In particular, a synergistic action of MgO nanoparticles and in situ N‐doping significantly suppresses the shuttling effect via enhanced chemisorption of lithium polysulfides. Owing to these merits, the as‐built electrode with an ultrahigh sulfur loading of 14.4 mg cm?2 manifests a high initial areal capacity of 10.4 mAh cm?2, still retains 8.8 mAh cm?2 (612 mAh g?1 in gravimetric capacity) over 50 cycles. The best cycling performance is achieved upon 800 cycles with an extremely low decay rate of 0.06% at 2 C. Furthermore, a flexible soft‐packaged Li‐S battery is readily assembled, which highlights stable electrochemical characteristics under bending and even folding. This cathode structural design may open up a potential avenue for practical application of high‐sulfur‐loading Li‐S batteries toward flexible energy‐storage devices.  相似文献   

2.
The rechargeable aluminum–sulfur (Al–S) battery is a promising next generation electrochemical energy storage system owing to its high theoretical capacity of 1672 mAh g?1 and in combining low‐cost and naturally abundant elements, Al and S. However, to date, its poor reversibility and low lifespan have limited its practical application. In this paper, a composite cathode is reported for Al–S batteries based on S anchored on a carbonized HKUST‐1 matrix (S@HKUST‐1‐C). The S@HKUST‐1‐C composite maintains a reversible capacity of 600 mAh g?1 at the 75th cycle and a reversible capacity of 460 mAh g?1 at the 500th cycle under a current density of 1 A g?1, with a Coulombic efficiency of around 95%. X‐ray diffraction and Auger spectrum results reveal that the Cu in HKUST‐1 forms S–Cu ionic clusters. This serves to facilitate the electrochemical reaction and improve the reversibility of S during charge/discharge. Additionally, Cu increases the electron conductivity at the carbon matrix/S interface to significantly decrease the kinetic barrier for the conversion of sulfur species during battery operation.  相似文献   

3.
The lithium–sulfur (Li–S) battery is regarded as the most promising rechargeable energy storage technology for the increasing applications of clean energy transportation systems due to its remarkable high theoretical energy density of 2.6 kWh kg?1, considerably outperforming today's lithium‐ion batteries. Additionally, the use of sulfur as active cathode material has the advantages of being inexpensive, environmentally benign, and naturally abundant. However, the insulating nature of sulfur, the fast capacity fading, and the short lifespan of Li–S batteries have been hampered their commercialization. In this paper, a functional mesoporous carbon‐coated separator is presented for improving the overall performance of Li–S batteries. A straightforward coating modification of the commercial polypropylene separator allows the integration of a conductive mesoporous carbon layer which offers a physical place to localize dissolved polysulfide intermediates and retain them as active material within the cathode side. Despite the use of a simple sulfur–carbon black mixture as cathode, the Li–S cell with a mesoporous carbon‐coated separator offers outstanding performance with an initial capacity of 1378 mAh g?1 at 0.2 C, and high reversible capacity of 723 mAh g?1, and degradation rate of only 0.081% per cycle, after 500 cycles at 0.5 C.  相似文献   

4.
Lithium–sulfur (Li–S) batteries are promising energy storage systems due to their large theoretical energy density of 2600 Wh kg?1 and cost effectiveness. However, the severe shuttle effect of soluble lithium polysulfide intermediates (LiPSs) and sluggish redox kinetics during the cycling process cause low sulfur utilization, rapid capacity fading, and a low coulombic efficiency. Here, a 3D copper, nitrogen co‐doped hierarchically porous graphitic carbon network developed through a freeze‐drying method (denoted as 3D Cu@NC‐F) is prepared, and it possesses strong chemical absorption and electrocatalytic conversion activity for LiPSs as highly efficient sulfur host materials in Li–S batteries. The porous carbon network consisting of 2D cross‐linked ultrathin carbon nanosheets provides void space to accommodate volumetric expansion upon lithiation, while the Cu, N‐doping effect plays a critical role for the confinement of polysulfides through chemical bonding. In addition, after sulfuration of Cu@NC‐F network, the in situ grown copper sulfide (CuxS) embedded within CuxS@NC/S‐F composite catalyzes LiPSs conversion during reversible cycling, resulting in low polarization and fast redox reaction kinetics. At a current density of 0.1 C, the CuxS@NC/S‐F composites' electrode exhibits an initial capacity of 1432 mAh g?1 and maintains 1169 mAh g?1 after 120 cycles, with a coulombic efficiency of nearly 100%.  相似文献   

5.
Hierarchical porous carbon (HPC, DUT‐106) with tailored pore structure is synthesized using a versatile approach based on ZnO nanoparticles avoiding limitations present in conventional silica hard templating approaches. The benefit of the process presented here is the removal of all pore building components by pyrolysis of the ZnO/carbon composite without any need for either toxic/reactive gases or purification of the as‐prepared hierarchical porous carbon. The carbothermal reduction process is accompanied by an advantageous growing of distinctive micropores within the thin carbon walls. The resulting materials show not only high internal porosity (total pore volume up to 3.9 cm3 g?1) but also a large number of electrochemical reaction sites due to their remarkably high specific surface area (up to 3060 m2 g?1), which renders them particularly suitable for the application as sulfur host material. Applied in the lithium‐sulfur battery, the HPC/sulfur composite exhibits a capacity of >1200 mAh g?1‐sulfur (>750 mAh g?1 electrode) at a high sulfur loading of ≥ 3 mg cm?2 as well as outstanding rate capability. In fact, this impressive performance is achieved even using a low amount of electrolyte (6.8 μl mg?1 sulfur) allowing for further weight reduction and maintenance of high energy density on cell level.  相似文献   

6.
The emergence of flexible and wearable electronic devices with shape amenability and high mobility has stimulated the development of flexible power sources to bring revolutionary changes to daily lives. The conventional rechargeable batteries with fixed geometries and sizes have limited their functionalities in wearable applications. The first‐ever graphene‐based fibrous rechargeable batteries are reported in this work. Ultralight composite fibers consisting of reduced graphene oxide/carbon nanotube filled with a large amount of sulfur (rGO/CNT/S) are prepared by a facile, one‐pot wet‐spinning method. The liquid crystalline behavior of high concentration GO sheets facilitates the alignment of rGO/CNT/S composites, enabling rational assembly into flexible and conductive fibers as lithium–sulfur battery electrodes. The ultralight fiber electrodes with scalable linear densities ranging from 0.028 to 0.13 mg cm?1 deliver a high initial capacity of 1255 mAh g?1 and an areal capacity of 2.49 mAh cm?2 at C /20. A shape‐conformable cable battery prototype demonstrates a stable discharge characteristic after 30 bending cycles.  相似文献   

7.
The battery community has recently witnessed a considerable progress in the cycle lives of lithium‐sulfur (Li‐S) batteries, mostly by developing the electrode structures that mitigate fatal dissolution of lithium polysulfides. Nonetheless, most of the previous successful demonstrations have been based on limited areal capacities. For realistic battery applications, however, the chronic issues from both the anode (lithium dendrite growth) and the cathode (lithium polysulfide dissolution) need to be readdressed under much higher loading of sulfur active material. To this end, the current study integrates the following three approaches in a systematic manner: 1) the sulfur electrode material with diminished lithium polysulfide dissolution by the covalently bonded sulfur‐carbon microstructure, 2) mussel‐inspired polydopamine coating onto the separator that suppresses lithium dendrite growth by wet‐adhesion between the separator and Li metal, and 3) addition of cesium ions (Cs+) to the electrolyte to repel incoming Li ions and thus prevent Li dendrite growth. This combined strategy resolves the long‐standing problems from both electrodes even under the very large sulfur‐carbon composite loading of 17 mg cm?2 in the sulfur electrode, enabling the highest areal capacity (9 mAh cm?2) to date while preserving stable cycling performance.  相似文献   

8.
Solid‐state lithium–sulfur battery (SSLSB) is attractive due to its potential for providing high energy density. However, the cell chemistry of SSLSB still faces challenges such as sluggish electrochemical kinetics and prominent “chemomechanical” failure. Herein, a high‐performance SSLSB is demonstrated by using the thio‐LiSICON/polymer composite electrolyte in combination with sulfurized polyacrylonitrile (S/PAN) cathode. Thio‐LiSICON/polymer composite electrolyte, which processes high ionic conductivity and wettability, is fabricated to enhance the interfacial contact and the performance of lithium metal anodes. S/PAN is utilized due to its unique electrochemical characteristics: electrochemical and structural studies combined with nuclear magnetic resonance spectroscopy and electron paramagnetic resonance characterizations reveal the charge/discharge mechanism of S/PAN, which is the radical‐mediated redox reaction within the sulfur grafted conjugated polymer framework. This characteristic of S/PAN can support alleviating the volume change in the cathode and maintaining fast redox kinetics. The assembled SSLSB full cell exhibits excellent rate performance with 1183 mAh g?1 at 0.2 C and 719 mAh g?1 at 0.5 C, respectively, and can accomplish 50 cycles at 0.1 C with the capacity retention of 588 mAh g?1. The superior performance of the SSLSB cell rationalizes the construction concept and leads to considerations for the innovative design of SSLSB.  相似文献   

9.
The rational combination of conductive nanocarbon with sulfur leads to the formation of composite cathodes that can take full advantage of each building block; this is an effective way to construct cathode materials for lithium–sulfur (Li–S) batteries with high energy density. Generally, the areal sulfur‐loading amount is less than 2.0 mg cm?2, resulting in a low areal capacity far below the acceptable value for practical applications. In this contribution, a hierarchical free‐standing carbon nanotube (CNT)‐S paper electrode with an ultrahigh sulfur‐loading of 6.3 mg cm?2 is fabricated using a facile bottom–up strategy. In the CNT–S paper electrode, short multi‐walled CNTs are employed as the short‐range electrical conductive framework for sulfur accommodation, while the super‐long CNTs serve as both the long‐range conductive network and the intercrossed mechanical scaffold. An initial discharge capacity of 6.2 mA·h cm?2 (995 mA·h g?1), a 60% utilization of sulfur, and a slow cyclic fading rate of 0.20%/cycle within the initial 150 cycles at a low current density of 0.05 C are achieved. The areal capacity can be further increased to 15.1 mA·h cm?2 by stacking three CNT–S paper electrodes—resulting in an areal sulfur‐loading of 17.3 mg cm?2—for the cathode of a Li–S cell. The as‐obtained free‐standing paper electrode are of low cost and provide high energy density, making them promising for flexible electronic devices based on Li–S batteries.  相似文献   

10.
Urchin‐shaped NiCo2Se4 (u‐NCSe) nanostructures as efficient sulfur hosts are synthesized to overcome the limitations of lithium–sulfur batteries (LSBs). u‐NCSe provides a beneficial hollow structure to relieve volumetric expansion, a superior electrical conductivity to improve electron transfer, a high polarity to promote absorption of lithium polysulfides (LiPS), and outstanding electrocatalytic activity to accelerate LiPS conversion kinetics. Owing to these excellent qualities as cathode for LSBs, S@u‐NCSe delivers outstanding initial capacities up to 1403 mAh g?1 at 0.1 C and retains 626 mAh g?1 at 5 C with exceptional rate performance. More significantly, a very low capacity decay rate of only 0.016% per cycle is obtained after 2000 cycles at 3 C. Even at high sulfur loading (3.2 mg cm?2), a reversible capacity of 557 mAh g?1 is delivered after 600 cycles at 1 C. Density functional theory calculations further confirm the strong interaction between NCSe and LiPS, and cytotoxicity measurements prove the biocompatibility of NCSe. This work not only demonstrates that transition metal selenides can be promising candidates as sulfur host materials, but also provides a strategy for the rational design and the development of LSBs with long‐life and high‐rate electrochemical performance.  相似文献   

11.
As one important component of sulfur cathodes, the carbon host plays a key role in the electrochemical performance of lithium‐sulfur (Li‐S) batteries. In this paper, a mesoporous nitrogen‐doped carbon (MPNC)‐sulfur nanocomposite is reported as a novel cathode for advanced Li‐S batteries. The nitrogen doping in the MPNC material can effectively promote chemical adsorption between sulfur atoms and oxygen functional groups on the carbon, as verified by X‐ray absorption near edge structure spectroscopy, and the mechanism by which nitrogen enables the behavior is further revealed by density functional theory calculations. Based on the advantages of the porous structure and nitrogen doping, the MPNC‐sulfur cathodes show excellent cycling stability (95% retention within 100 cycles) at a high current density of 0.7 mAh cm‐2 with a high sulfur loading (4.2 mg S cm‐2) and a sulfur content (70 wt%). A high areal capacity (≈3.3 mAh cm‐2) is demonstrated by using the novel cathode, which is crucial for the practical application of Li‐S batteries. It is believed that the important role of nitrogen doping promoted chemical adsorption can be extended for development of other high performance carbon‐sulfur composite cathodes for Li‐S batteries.  相似文献   

12.
The sp2‐hybridized nanocarbon (e.g., carbon nanotubes (CNTs) and graphene) exhibits extraordinary mechanical strength and electrical conductivity but limited external accessible surface area and a small amount of pores, while nanostructured porous carbon affords a huge surface area and abundant pore structures but very poor electrical conductance. Herein the rational hybridization of the sp2 nanocarbon and nanostructured porous carbon into hierarchical all‐carbon nanoarchitectures is demonstrated, with full inherited advantages of the component materials. The sp2 graphene/CNT interlinked networks give the composites good electrical conductivity and a robust framework, while the meso‐/microporous carbon and the interlamellar compartment between the opposite graphene accommodate sulfur and polysulfides. The strong confinement induced by micro‐/mesopores of all‐carbon nanoarchitectures renders the transformation of S8 crystal into amorphous cyclo‐S8 molecular clusters, restraining the shuttle phenomenon for high capacity retention of a lithium‐sulfur cell. Therefore, the composite cathode with an ultrahigh specific capacity of 1121 mAh g?1 at 0.5 C, a favorable high‐rate capability of 809 mAh g?1 at 10 C, a very low capacity decay of 0.12% per cycle, and an impressive cycling stability of 877 mAh g?1 after 150 cycles at 1 C. As sulfur loading increases from 50 wt% to 77 wt%, high capacities of 970, 914, and 613 mAh g?1 are still available at current densities of 0.5, 1, and 5 C, respectively. Based on the total mass of packaged devices, gravimetric energy density of GSH@APC‐S//Li cell is expected to be 400 Wh kg?1 at a power density of 10 000 W kg?1, matching the level of engine driven systems.  相似文献   

13.
Wearable electronic devices are the new darling of consumer electronics, and energy storage devices are an important part of them. Here, a wearable lithium‐sulfur (Li‐S) bracelet battery using three‐dimensional (3D) printing technology (additive manufacturing) is designed and manufactured for the first time. The bracelet battery can be easily worn to power the wearable device. The “additive” manufacturing characteristic of 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost‐effective manner. Due to the conductive 3D skeleton providing interpenetrating transmission paths and channels for electrons and ions, the 3D Li‐S battery can provide 505.4 mAh g?1 specific capacity after 500 cycles with an active material loading as high as 10.2 mg cm?1. The practicality is illustrated by wearing the bracelet battery on the wrist and illuminating the red light‐emitting diode. Therefore, the bracelet battery manufactured by 3D printing technology can address the needs of the wearable power supply.  相似文献   

14.
All‐solid‐state lithium metal batteries (ASSLMBs) have attracted significant attention due to their superior safety and high energy density. However, little success has been made in adopting Li metal anodes in sulfide electrolyte (SE)‐based ASSLMBs. The main challenges are the remarkable interfacial reactions and Li dendrite formation between Li metal and SEs. In this work, a solid‐state plastic crystal electrolyte (PCE) is engineered as an interlayer in SE‐based ASSLMBs. It is demonstrated that the PCE interlayer can prevent the interfacial reactions and lithium dendrite formation between SEs and Li metal. As a result, ASSLMBs with LiFePO4 exhibit a high initial capacity of 148 mAh g?1 at 0.1 C and 131 mAh g?1 at 0.5 C (1 C = 170 mA g?1), which remains at 122 mAh g?1 after 120 cycles at 0.5 C. All‐solid‐state Li‐S batteries based on the polyacrylonitrile‐sulfur composite are also demonstrated, showing an initial capacity of 1682 mAh g?1. The second discharge capacity of 890 mAh g?1 keeps at 775 mAh g?1 after 100 cycles. This work provides a new avenue to address the interfacial challenges between Li metal and SEs, enabling the successful adoption of Li metal in SE‐based ASSLMBs with high energy density.  相似文献   

15.
Designing an optimum cell configuration that can deliver high capacity, fast charge–discharge capability, and good cycle retention is imperative for developing a high‐performance lithium–sulfur battery. Herein, a novel lithium–sulfur cell design is proposed, which consists of sulfur and magnesium–aluminum‐layered double hydroxides (MgAl‐LDH)–carbon nanotubes (CNTs) composite cathode with a modified polymer separator produced by dual side coating approaches (one side: graphene and the other side: aluminum oxides). The composite cathode functions as a combined electrocatalyst and polysulfide scavenger, greatly improving the reaction kinetics and stabilizing the Coulombic efficiency upon cycling. The modified separator enhances further Li+‐ion or electron transport and prevents undesirable contact between the cathode and dendritic lithium on the anode. The proposed lithium–sulfur cell fabricated with the as‐prepared composite cathode and modified separator exhibits a high initial discharge capacity of 1375 mA h g?1 at 0.1 C rate, excellent cycling stability during 200 cycles at 1 C rate, and superior rate capability up to 5 C rate, even with high sulfur loading of 4.0 mg cm?2. In addition, the findings that found in postmortem chracterization of cathode, separator, and Li metal anode from cycled cell help in identifying the reason for its subsequent degradation upon cycling in Li–S cells.  相似文献   

16.
The lithium sulfur battery system has been studied since the late 1970s and has seen renewed interest in recent years. However, even after three decades of intensive research, prolonged cycling can only be achieved when a large excess of electrolyte and lithium is used. Here, for the first time, a balanced and stable lithium sulfur full cell is demonstrated with silicon–carbon as well as all‐carbon anodes. More than 1000 cycles, a specific capacity up to 1470 mAh g?1 sulfur (720 mAh g?1 cathode), and a high coulombic efficiency of over 99% even with a low amount of electrolyte are achieved. The alternative anodes do not suffer from electrolyte depletion, which is found to be the main cause of cell failure when using metallic lithium anodes.  相似文献   

17.
High capacity electrodes based on a Si composite anode and a layered composite oxide cathode, Ni‐rich Li[Ni0.75Co0.1Mn0.15]O2, are evaluated and combined to fabricate a high energy lithium ion battery. The Si composite anode, Si/C‐IWGS (internally wired with graphene sheets), is prepared by a scalable sol–gel process. The Si/C‐IWGS anode delivers a high capacity of >800 mAh g?1 with an excellent cycling stability of up to 200 cycles, mainly due to the small amount of graphene (~6 wt%). The cathode (Li[Ni0.75Co0.1Mn0.15]O2) is structurally optimized (Ni‐rich core and a Ni‐depleted shell with a continuous concentration gradient between the core and shell, i.e., a full concentration gradient, FCG, cathode) so as to deliver a high capacity (>200 mAh g?1) with excellent stability at high voltage (~4.3 V). A novel lithium ion battery system based on the Si/C‐IWGS anode and FCG cathode successfully demonstrates a high energy density (240 Wh kg?1 at least) as well as an unprecedented excellent cycling stability of up to 750 cycles between 2.7 and 4.2 V at 1C. As a result, the novel battery system is an attractive candidate for energy storage applications demanding a high energy density and long cycle life.  相似文献   

18.
Li‐S batteries can potentially deliver high energy density and power, but polysulfide shuttle and lithium dendrite formations on Li metal anode have been the major hurdle. The polysulfide shuttle becomes severe particularly when the areal loading of the active material (sulfur) is increased to deliver the high energy density and the charge/discharge current density is raised to deliver high power. This study reports a novel mechanochemical method to create trenches on the surface of carbon nanotubes (CNTs) in free‐standing 3D porous CNT sponges. Unique spiral trenches are created by pressures during the chemical treatment process, providing polysulfide‐philic surfaces for cathode and lithiophilic surfaces for anode. The Li‐S cells made from manufacturing‐friendly sulfur‐sandwiched cathodes and lithium‐infused anodes using the mechanochemically treated electrodes exhibit a strikingly high areal capacity as high as 13.3 mAh cm?2, which is only marginally reduced even with a tenfold increase in current density (16 mA cm?2), demonstrating both high “cell‐level” energy density and power. The outstanding performance can be attributed to the significantly improved reaction kinetics and lowered overpotentials coming from the reduced interfacial resistance and charge transfer resistance at both cathodes and anodes. The trench–wall CNT sponge simultaneously tackles the most critical problems on both the cathodes and anodes of Li‐S batteries, and this method can be utilized in designing new electrode materials for energy storage and beyond.  相似文献   

19.
Silicon nanoparticles (Si NPs) have been considered as promising anode materials for next‐generation lithium‐ion batteries, but the practical issues such as mechanical structure instability and low volumetric energy density limit their development. At present, the functional energy‐storing architectures based on Si NPs building blocks have been proposed to solve the adverse effects of nanostructures, but designing ideal functional architectures with excellent electrochemical performance is still a significant challenge. This study shows that the effective stress evolution management is applied for self‐assembled functional architectures via cross‐scale simulation and the simulated stress evolution can be a guide to design a scalable self‐assembled hierarchical Si@TiO2@C (SA‐SiTC) based on core–shell Si@TiO2 nanoscale building blocks. It is found that the carbon filler and TiO2 layer can effectively reduce the risk of cracking during (de)lithiation, ensuring the stability of the mechanical structure of SA‐SiTC. The SA‐SiTC electrode shows long cycling stability (842.6 mAh g?1 after 1000 cycles at 2 A g?1), high volumetric capacity (174 mAh cm?3), high initial Coulombic efficiency (80.9%), and stable solid‐electrolyte interphase (SEI) layer. This work provides insight into the development of the structural stable Si‐based anodes with long cycle life and high volumetric energy density for practical energy applications.  相似文献   

20.
Lithium–sulfur batteries have great potential to satisfy the increasing demand of energy storage systems for portable devices, electric vehicles, and grid storage because of their extremely high specific capacity, cost‐effectiveness, and environmental friendliness. In spite of all these merits, the practical utilization of lithium–sulfur batteries is impeded by commonly known challenges, such as low sulfur utilization (<80%), short life (<200 cycles), fast capacity fade, and severe self‐discharge effect, which mainly result from the i) low conductivity of the active material, ii) serious polysulfide shuttling, iii) large volume changes, and iv) lithium–metal anode contamination/corrosion. Numerous approaches are reported to effectively mitigate these issues. Indeed, such approaches have shown enhanced lithium–sulfur battery performances. However, many reports overlook the critical parameters, including sulfur loading (<13 mg cm?2), sulfur content (<70 wt%), and electrolyte/sulfur ratio (>11 µL mg?1), that significantly affect the analyzed electrochemical characteristics, energy density, and practicality of lithium–sulfur batteries. This review highlights the trends and progress in making cells fulfilling these fabrication parameters and discuss the challenges of the amount of sulfur and electrolyte in fabricating cells with practically necessary parameters and with high electrochemical utilization and efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号