首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical logic gates can be fabricated by synthesizing molecules that have the ability to detect external stimuli (e.g., temperature or pH) and provide logical outputs. It is, however, challenging to fabricate a system that consists of many logic gates using this method: complex molecules can be difficult to synthesize and these logic gates typically cannot be integrated together. Here, we fabricated different types of logic gates by assembling a combination of different types of stimuli‐responsive hydrogels that change their size under the influence of one type of stimulus. Importantly, the preparation of these stimuli‐responsive hydrogels is widely reported and technically simple. Through designing the geometry of the systems, we fabricated the YES, NOT, OR, AND, NOR, and NAND gates. Although the hydrogels respond to different types of stimuli, their outputs are the same: a change in size of the hydrogel. Hence, we show that the logic gates can be integrated easily (e.g., by connecting an AND gate to an OR gate). In addition, we fabricated a standalone system with the size of a normal drug tablet (i.e., a “smart tablet”) that can analyze (or diagnose) different stimuli and control the release of a chemical (or drug) via the logic gates.  相似文献   

2.
3.
Responsive optical nanomaterials that can sense and translate various external stimuli into optical signals, in the forms of observable changes in appearance and variations in spectral line shapes, are among the most active research topics in nanooptics. They are intensively exploited within the regimes of the four classic optical phenomena—diffraction in photonic crystals, absorption of plasmonic nanostructures, as well as color‐switching systems, refraction of assembled birefringent nanostructures, and emission of photoluminescent nanomaterials and molecules. Herein, a comprehensive review of these research activities regarding the fundamental principles and practical strategies is provided. Starting with an overview of their substantial developments during the latest three decades, each subtopic discussion is led with fundamental theories that delineate the correlation between nanostructures and optical properties and the delicate research strategies are elaborated with specific attention focused on working principles and optical performances. The unique advantages and inherent limitations of each responsive optical nanoscale platform are summarized, accompanied by empirical criteria that should be met and perspectives on research opportunities where the developments of next‐generation responsive optical nanomaterials might be directed.  相似文献   

4.
Amphiphilicity is one of the molecular bases for self‐assembly. By tuning the amphiphilicity of building blocks, controllable self‐assembly can be realized. This article reviews different routes for tuning amphiphilicity and discusses different possibilities for self‐assembly and disassembly in a controlled manner. In general, this includes irreversible and reversible routes. The irreversible routes concern irreversible reactions taking place on the building blocks and changing their molecular amphiphilicity. The building blocks are then able to self‐assemble to form different supramolecular structures, but cannot remain stable upon loss of amphiphilicity. Compared to the irreversible routes, the reversible routes are more attractive due to the good control over the assembly and disassembly of the supramolecular structure formed via tuning of the amphiphilicity. These routes involve reversible chemical reactions and supramolecular approaches, and different external stimuli can be used to trigger reversible changes of amphiphilicity, including light, redox, pH, and enzymes. It is anticipated that this line of research can lead to the fabrication of new functional supramolecular assemblies and materials.  相似文献   

5.
The introduction of stimuli‐responsive polymers into the study of organic catalysis leads to the generation of a new kind of polymer‐based stimuli‐responsive recyclable catalytic system. Owing to their reversible switching properties in response to external stimuli, these systems are capable of improving the mass transports of reactants/products in aqueous solution, modulating the chemical reaction rates, and switching the catalytic process on and off. Furthermore, their stimuli‐responsive properties facilitate the separation and recovery of the active catalysts from the reaction mixtures. As a fascinating approach of the controllable catalysis, these stimuli‐responsive catalytic systems including thermoresponsive, pH‐responsive, chemo‐mechano‐chemical, ionic strength‐responsive, and dual‐responsive, are reviewed in terms of their nanoreactors and mechanisms.  相似文献   

6.
Logic gates can convert input signals into a defined output signal, which is the fundamental basis of computing. Inspired by molecular switching from one state to another under an external stimulus, molecular logic gates are explored extensively and recognized as an alternative to traditional silicon‐based computing. Among various building blocks of molecular logic gates, nucleic acid attracts special attention owing to its specific recognition abilities and structural features. Functional materials with unique physical and chemical properties offer significant advantages and are used in many fields. The integration of nucleic acids and functional materials is expected to bring about several new phenomena. In this Progress Report, recent progress in the construction of logic gates by combining the properties of a range of smart materials with nucleic acids is introduced. According to the structural characteristics and composition, functional materials are categorized into three classes: polymers, noble‐metal nanomaterials, and inorganic nanomaterials. Furthermore, the unsolved problems and future challenges in the construction of logic gates are discussed. It is hoped that broader interests in introducing new smart materials into the field are inspired and tangible applications for these constructs are found.  相似文献   

7.
Self‐folding microgrippers are an emerging class of smart structures that have widespread applications in medicine and micro/nanomanipulation. To achieve their functionalities, these architectures rely on spatially patterned hinges to transform into 3D configurations in response to an external stimulus. Incorporating hinges into the devices requires the processing of multiple layers which eventually increases the fabrication costs and actuation complexities. The goal of this work is to demonstrate that it is possible to achieve gripper‐like configurations in an on‐demand manner from simple planar bilayers that do not require hinges for their actuation. Finite element modeling of bilayers is performed to understand the mechanics behind their stimuli‐responsive shape transformation behavior. The model predictions are then experimentally validated and axisymmetric gripper‐like shapes are realized using millimeter‐scale poly(dimethylsiloxane) bilayers that undergo differential swelling in organic solvents. Owing to the nature of the computational scheme which is independent of length scales and material properties, the guidelines reported here would be applicable to a diverse array of gripping systems and functional devices. Thus, this work not only demonstrates a simple route to fabricate functional microgrippers but also contributes to self‐assembly in general.  相似文献   

8.
Inorganic nanoparticles and their accompanying diverse physical properties are now virtually in routine use as imaging tools in cell‐biology. In addition to serving as excellent contrast agents, their size‐ and environment‐dependent optical and magnetic properties can be harnessed to create enzyme biosensor devices of extremely high sensitivity, whilst circumventing the numerous technical limitations associated with traditional enzyme assays. In this Research News article we discuss recent advances in field of enzyme‐responsive nanoparticle systems, where the activity of an enzyme elicits a specific response in the nanoparticle assembly to produce a signal relating to enzyme activity, focusing on three important systems: DNA‐structured nanoparticles, protein kinases and proteases.  相似文献   

9.
10.
11.
Soft matter systems and materials are moving toward adaptive and interactive behavior, which holds outstanding promise to make the next generation of intelligent soft materials systems inspired from the dynamics and behavior of living systems. But what is an adaptive material? What is an interactive material? How should classical responsiveness or smart materials be delineated? At present, the literature lacks a comprehensive discussion on these topics, which is however of profound importance in order to identify landmark advances, keep a correct and noninflating terminology, and most importantly educate young scientists going into this direction. By comparing different levels of complex behavior in biological systems, this Viewpoint strives to give some definition of the various different materials systems characteristics. In particular, the importance of thinking in the direction of training and learning materials, and metabolic or behavioral materials is highlighted, as well as communication and information-processing systems. This Viewpoint aims to also serve as a switchboard to further connect the important fields of systems chemistry, synthetic biology, supramolecular chemistry and nano- and microfabrication/3D printing with advanced soft materials research. A convergence of these disciplines will be at the heart of empowering future adaptive and interactive materials systems with increasingly complex and emergent life-like behavior.  相似文献   

12.
“Paper” has greatly contributed to the development and spread of civilization. Even in today's “digitalized” world, paper continues to play a key role in socioeconomic growth, as is evidenced by the growth in global paper consumption. Unfortunately, the use of paper has its cost in terms of the exhaustion of world's natural resources. Consequently, new, cost‐effective technologies that preserve natural resources are required for this purpose. Functional materials have revolutionized the way people think about developing new technologies. Especially important in this regard are “smart reactive materials,” which are capable of actively responding to external stimuli such as heat, light, mechanical stress, and specific molecular orientations. Moreover, functionalized chromogenic materials, which undergo reversible color switching upon external stimulation, have attracted great attention in the context of developing rewritable paper. Here, investigations of various materials and systems that are devised for use as rewritable paper are reviewed with the hope that the coverage will stimulate and guide future studies in this area.  相似文献   

13.
14.
Proteinaceous materials based on the amyloid core structure have recently been discovered at the origin of biological functionality in a remarkably diverse set of roles, and attention is increasingly turning towards such structures as the basis of artificial self‐assembling materials. These roles contrast markedly with the original picture of amyloid fibrils as inherently pathological structures. Here we outline the salient features of this class of functional materials, both in the context of the functional roles that have been revealed for amyloid fibrils in nature, as well as in relation to their potential as artificial materials. We discuss how amyloid materials exemplify the emergence of function from protein self‐assembly at multiple length scales. We focus on the connections between mesoscale structure and material function, and demonstrate how the natural examples of functional amyloids illuminate the potential applications for future artificial protein based materials.  相似文献   

15.
16.
17.
18.
We describe here the advantages of oligo(ethylene glycol)‐based (co)polymers for preparing thermoresponsive materials as diverse as polymer‐enzyme bio‐hybrids, injectable hydrogels, capsules for drug‐release, modified magnetic particles for in vivo utilization, cell‐culture substrates, antibacterial surfaces, or stationary phases for bioseparation. Oligo(ethylene glycol) methacrylates (OEGMAs) can be (co)polymerized using versatile and widely‐applicable methods of polymerization such as atom transfer radical polymerization (ATRP) of reversible addition‐fragmentation chain‐transfer (RAFT) polymerization. Thus, the molecular structure and therefore the stimuli‐responsive properties of these polymers can be precisely controlled. Moreover, these stimuli‐responsive macromolecules can be easily attached to–or directly grown from–organic, inorganic or biological materials. As a consequence, the OEGMA synthetic platform is today a popular option for materials design. The present research news summaries the progress of the last two years.  相似文献   

19.
20.
A self‐assembly approach for the design of multifunctional nanomaterials consisting of different nanoparticles (gold, iron oxide, and lanthanide‐doped LiYF4) is developed. This modular system takes advantage of the light‐responsive supramolecular host–guest chemistry of β‐cyclodextrin and arylazopyrazole, which enables the dynamic and reversible self‐assembly of particles to spherical nanoparticle aggregates in aqueous solution. Due to the magnetic iron oxide nanoparticles, the aggregates can be manipulated by an external magnetic field leading to the formation of linear structures. As a result of the integration of upconversion nanoparticles, the aggregates are additionally responsive to near‐infrared light and can be redispersed by use of the upconversion effect. By varying the nanoparticle and linker concentrations the composition, size, shape, and properties of the multifunctional nanoparticle aggregates can be fine‐tuned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号