首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The NIR light‐induced imaging‐guided cancer therapy is a promising route in the targeting cancer therapy field. However, up to now, the existing single‐modality light‐induced imaging effects are not enough to meet the higher diagnosis requirement. Thus, the multifunctional cancer therapy platform with multimode light‐induced imaging effects is highly desirable. In this work, captopril stabilized‐Au nanoclusters Au25(Capt)18?(Au25) are assembled into the mesoporous silica shell coating outside of Nd3+‐sensitized upconversion nanoparticles (UCNPs) for the first time. The newly formed Au25 shell exhibits considerable photothermal effects, bringing about the photothermal imaging and photoacoustic imaging properties, which couple with the upconversion luminescence imaging. More importantly, the three light‐induced imaging effects can be simultaneously achieved by exciting with a single NIR light (808 nm), which is also the triggering factor for the photothermal and photodynamic cancer therapy. Besides, the nanoparticles can also present the magnetic resonance and computer tomography imaging effects due to the Gd3+ and Yb3+ ions in the UCNPs. Furthermore, due to the photodynamic and the photothermal effects, the nanoparticles possess efficient in vivo tumor growth inhibition under the single irradiation of 808 nm light. The multifunctional cancer therapy platform with multimode imaging effects realizes a true sense of light‐induced imaging‐guided cancer therapy.  相似文献   

2.
Nanocarriers for chemo‐photothermal therapy suffer from insufficient retention at the tumor site and poor penetration into tumor parenchyma. A smart drug‐dye‐based micelle is designed by making the best of the structural features of small‐molecule drugs. P‐DOX is synthesized by conjugating doxorubicin (DOX) with poly(4‐formylphenyl methacrylate‐co‐2‐(diethylamino) ethyl methacrylate)‐b‐polyoligoethyleneglycol methacrylate (P(FPMA‐co‐DEA)‐b‐POEGMA) via imine linkage. Through the π–π stacking interaction, IR780, a near‐infrared fluorescence dye as well as a photothermal agent, is integrated into the micelles (IR780‐PDMs) with the P‐DOX. The IR780‐PDMs show remarkably long blood circulation (t1/2β = 22.6 h). As a result, a progressive tumor accumulation and retention are presented, which is significant to the sequential drug release. Moreover, when entering into a moderate acidic tumor microenvironment, IR780‐PDMs can dissociate into small‐size conjugates and IR780, which obviously increases the penetration depth of drugs, and then improves the lethality to deep‐seated tumor cells. Owing to the high delivery efficiency and superior chemo‐photothermal therapeutic efficacy of IR780‐PDMs, 97.6% tumor growth in the A549 tumor‐bearing mice is suppressed with a low dose of intravenous injection (DOX, 1.5 mg kg?1; IR780, 0.8 mg kg?1). This work presents a brand‐new strategy for long‐acting intensive cancer therapy.  相似文献   

3.
Polypyrrole nanoparticles conjugating gadolinium chelates were successfully fabricated for dual‐modal magnetic resonance imaging (MRI) and photoacoustic imaging guided photothermal therapy of cancer, from a mixture of pyrrole and pyrrole‐1‐propanoic acid through a facile one‐step aqueous dispersion polymerization, followed by covalent attachment of gadolinium chelate, using polyethylene glycol as a linker. The obtained PEGylated poly­pyrrole nanoparticles conjugating gadolinium chelates (Gd‐PEG‐PPy NPs), sized around around 70 nm, exhibited a high T1 relaxivity coefficient of 10.61 L mm ?1 s?1, more than twice as high as that of the relating free Gd3+ complex (4.2 L mm –1 s?1). After 24 h intravenous injection of Gd‐PEG‐PPy NPs, the tumor sites exhibited obvious enhancement in both T1‐weighted MRI intensity and photoacoustic signal compared with that before injection, indicating the efficient accumulation of Gd‐PEG‐PPy NPs due to the introduction of the PEG layer onto the particle surface. In addition, tumor growth could be effectively inhibited after treatment with Gd‐PEG‐PPy NPs in combination with near‐infrared laser irradiation. The passive targeting and high MRI/photo­acoustic contrast capability of Gd‐PEG‐PPy NPs are quite favorable for precise cancer diagnosing and locating the tumor site to guide the external laser irradiation for photothermal ablation of tumors without damaging the surrounding healthy tissues. Therefore, Gd‐PEG‐PPy NPs may assist in better monitoring the therapeutic process, and contribute to developing more effective “personalized medicine,” showing great potential for cancer diagnosis and therapy.  相似文献   

4.
Imaging‐guided photothermal therapy based on functional nanomaterials has recently received significant attention and the selection of functional materials with optimal imaging and therapy effect is extremely important. In this work, NaDyF4‐based nanoparticles with varying size are synthesized by doping with different amounts of lutetium ions. To obtain an optimized material, the influence factor of magnetic resonance, X‐ray attenuation, and photothermal properties are discussed in detail. Then, NaDyF4:50%Lu@Prussian blue (PB) nanocomposite is selected as the optimal functional material for T1‐ and T2‐weighted magnetic resonance imaging, X‐ray computed tomography, and photothermal imaging‐guided photothermal therapy of tumor on a small animal model, and the treatment is applied with good results. Studies also suggest that the NaDyF4:50%Lu@PB nanocomposites are biocompatibile. The selection of an optimal material from a multi‐perspective study has provided an incentive for the development of an assortment of novel multifunctional materials for early cancer multifunctional diagnosis and imaging‐guided photothermal therapy.  相似文献   

5.
Multifunctional nanodrugs integrating multiple therapeutic and imaging functions may find tremendous biomedical applications. However, the development of a simple yet potent theranostic nanosystem with a high payload and microenvironment responsiveness enhancing imaging‐guided cancer therapy is still a great challenge. Herein, a kind of MnCO‐entrapped mesoporous polydopamine nanoparticles are developed, which reach a 1.5 mg payload per gram carrier and exhibit marked theranostic capability through effective CO/Mn2+ generation and photothermal conversion inside the H+ and H2O2‐enriched tumor microenvironment, for a magnetic resonance/photoacoustic bimodal imaging‐guided tumor therapy. The multifunctional nanosystem exhibits a biocompatibility highly desirable for in vivo application and superior performance in inhibiting tumor growth and recurrence via combination CO and photothermal therapy.  相似文献   

6.
Phototheranostic agents in the second near‐infrared (NIR‐II) window (1000–1700 nm) are emerging as a promising theranostic platform for precision medicine due to enhanced penetration depth and minimized tissue exposure. The development of metabolizable NIR‐II nanoagents for imaging‐guided therapy are essential for noninvasive disease diagnosis and precise ablation of tumors. Herein, metabolizable highly absorbing NIR‐II conjugated polymer dots (Pdots) are reported for the first time for photoacoustic imaging guided photothermal therapy (PTT). The unique design of low‐bandgap D‐A π‐conjugated polymer (DPP‐BTzTD) together with modified nanoreprecipitation conditions allows to fabricate NIR‐II absorbing Pdots with ultrasmall (4 nm) particle size. Extensive experimental tests demonstrate that the constructed Pdots exhibit good biocompatibility, excellent photostability, bright photoacoustic signals, and high photothermal conversion efficiency (53%). In addition, upon tail‐vein intravenous injection of tumor‐bearing mice, Pdots also show high‐efficient tumor ablation capability with rapid excretion from the body. In particular, both in vitro and in vivo assays indicate that the Pdots possess remarkable PTT performance under irradiation with a 1064 nm laser with 0.5 W cm?2, which is much lower than its maximum permissible exposure limit of 1 W cm?2. This pilot study thus paves a novel avenue for the development of organic semiconducting nanoagents for future clinical translation.  相似文献   

7.
A photothermal bacterium (PTB) is reported for tumor‐targeted photothermal therapy (PTT) by using facultative anaerobic bacterium Shewanella oneidensis MR‐1 (S. oneidensis MR‐1) to biomineralize palladium nanoparticles (Pd NPs) on its surface without affecting bacterial activity. It is found that PTB possesses superior photothermal property in near infrared (NIR) regions, as well as preferential tumor‐targeting capacity. Zeolitic imidazole frameworks‐90 (ZIF‐90) encapsulating photosensitizer methylene blue (MB) are hybridized on the surface of living PTB to further enhance PTT efficacy. MB‐encapsulated ZIF‐90 (ZIF‐90/MB) can selectively release MB at mitochondria and cause mitochondrial dysfunction by producing singlet oxygen (1O2) under light illumination. Mitochondrial dysfunction further contributes to adenosine triphosphate (ATP) synthesis inhibition and heat shock proteins (HSPs) down‐regulated expression. The PTB‐based therapeutic platform of PTB@ZIF‐90/MB demonstrated here will find great potential to overcome the challenges of tumor targeting and tumor heat tolerance in PTT.  相似文献   

8.
This paper describes the fabrication and evaluation of folic acid (FA)‐conjugated nanodiamond (ND) nanoclusters for selective photothermal tumor therapy. ND nanoclusters with surface carboxyl groups are aminated using ethylenediamine and conjugated with FA via carbodiimide chemistry. The temperature of an aqueous ND dispersion (10 μg mL?1) is increased to 54 °C upon laser exposure for 5 min. FA‐ND nanoclusters are preferentially taken up by KB cells (folate receptor positive) compared to WI‐38 (folate receptor negative) cells, suggesting specificity for tumor cells that overexpress folate receptors. Cell viability tests reveal that FA‐ND nanoclusters effectively and selectively ablate KB cells upon near‐infrared (NIR) laser exposure. In addition, fluorescence microscopy images confirm that only KB cells treated with FA‐ND nanoclusters are ablated in a spot (200 μm in diameter) by NIR laser exposure. In an animal model, a large amount of FA‐ND nanoclusters is accumulated into tumor tissue, resulting in dramatically reduced tumor volume post‐NIR laser exposure as compared to ND nanoclusters.  相似文献   

9.
The ideal theranostic nanoplatform for tumors is a single nanoparticle that has a single semiconductor or metal component and contains all multimodel imaging and therapy abilities. The design and preparation of such a nanoparticle remains a serious challenge. Here, with FeS2 as a model of a semiconductor, the tuning of vacancy concentrations for obtaining “all‐in‐one” type FeS2 nanoparticles is reported. FeS2 nanoparticles with size of ≈30 nm have decreased photoabsorption intensity from the visible to near‐infrared (NIR) region, due to a low S vacancy concentration. By tuning their shape/size and then enhancing the S vacancy concentration, the photoabsorption intensity of FeS2 nanoparticles with size of ≈350 nm (FeS2‐350) goes up with the increase of the wavelength from 550 to 950 nm, conferring the high NIR photothermal effect for thermal imaging. Furthermore, this nanoparticle has excellent magnetic properties for T2‐weighted magnetic resonance imaging (MRI). Subsequently, FeS2‐350 phosphate buffer saline (PBS) dispersion is injected into the tumor‐bearing mice. Under the irradiation of 915‐nm laser, the tumor can be ablated and the metastasis lesions in liver suffer significant inhibition. Therefore, FeS2‐350 has great potential to be used as novel “all‐in‐one” multifunctional theranostic nanoagents for MRI and NIR dual‐modal imaging guided NIR‐photothermal ablation therapy (PAT) of tumors.  相似文献   

10.
Monitoring of in vivo drug release from nanotheranostics by noninvasive approaches remains very challenging. Herein, novel redox‐responsive polymeric magnetosomes (PolyMags) with tunable magnetic resonance imaging (MRI) properties are reported for in vivo drug release monitoring and effective dual‐modal cancer therapy. The encapsulation of doxorubicin (DOX) significantly decreases PolyMags' T2‐contrast enhancement and transverse relaxation rate R2, depending on the drug loading level. The T2 enhancement and R2 can be recovered once the drug is released upon PolyMags' disassembly. T2‐ and T2*‐MRI and diffusion‐weighted imaging (DWI) are utilized to quantitatively study the correlation between MRI signal changes and drug release, and discover the MR tuning mechanisms. The in vivo drug release pattern is visualized based on such tunable MRI capability via monitoring the changes in T2‐weighted images, T2 and T2* maps, and R2 and R2* values. Interestingly, the PolyMags possess excellent photothermal effect, which can be further enhanced upon DOX loading. The PolyMags are highly efficacious to treat breast tumors on xenograft model with tumor‐targeted photothermal‐ and chemotherapy, achieving a complete cure rate of 66.7%. The concept reported here is generally applicable to other micellar and liposomal systems for image‐guided drug delivery and release applications toward precision cancer therapy.  相似文献   

11.
Copper‐based ternary bimetal chalcogenides have very promising potential as multifunctional theragnosis nanoplatform for photothermal treatment of tumors. However, the design and synthesis of such an effective platform remains challenging. In this study, hydrophilic CuCo2S4 nanocrystals (NCs) with a desirable size of ≈10 nm are synthesized by a simple one‐pot hydrothermal route. The as‐prepared ultrasmall CuCo2S4 NCs show: 1) intense near‐infrared absorption, which is attributed to 3d electronic transitions from the valence band to an intermediate band, as identified by density functional theory calculations; 2) high photothermal performance with a photothermal conversion efficiency up to 73.4%; and 3) capability for magnetic resonance (MR) imaging, as a result of the unpaired 3d electrons of cobalt. Finally, it is demonstrated that the CuCo2S4 NCs are a promising “all‐in‐one” photothermal theragnosis nanoplatform for photothermal cancer therapy under the irradiation of a 915 nm laser at a safe power density of 0.5 W cm?2, guided by MR and infrared thermal imaging. This work further promotes the potential applications of ternary bimetal chalcogenides for photothermal theragnosis therapy.  相似文献   

12.
The quantitative detection of microRNA (miR) and multimode‐imaging‐induced photothermal therapy in vivo have become the focus of much attention. Platinum (Pt) decorated gold nanorods (AuNR‐Pt) and Ag2S core–satellite (AuNR‐Pt@Ag2S) multifunctional nanostructures are fabricated to quantify intracellular miRs (miR‐21), near‐infrared fluorescence cell quantitative imaging, and tumor ablation in vivo. When combined with miR‐21, the nanoassembly displays significant fluorescence intensity in the second window of the near‐infrared region (1000–1700 nm) after 808 nm excitation. The Ag2S fluorescence intensity has a good linear relationship with the amount of intracellular miR in the range of 0.054–20.45 amol ngRNA ?1 and a limit of detection of 0.0082 amol ngRNA ?1. The nanoassembly is also used to develop multimodal bioimaging, including near‐infrared, X‐ray computed tomographic, and photoacoustic imaging in HeLa‐tumor‐bearing mice. Moreover, the tumors are completely eliminated by the high photothermal capacity of the AuNR‐Pt@Ag2S assembly. This nanoassembly provides a multifunctional nanoplatform for the ultrasensitive detection of miRs and tumor diagnosis and therapy in vivo.  相似文献   

13.
A therapeutic carrier in the second near‐infrared (NIR) window is created that features magnetic target, magnetic resonance imaging (MRI) diagnosis, and photothermal therapy functions through the manipulation of a magnet and NIR laser. A covellite‐based CuS in the form of rattle‐type Fe3O4@CuS nanoparticles is developed to conduct photoinduced hyperthermia at 808 and 1064 nm of the first and second NIR windows, respectively. The Fe3O4@CuS nanoparticles exhibit broad NIR absorption from 700 to 1300 nm. The in vitro photothermal results show that the laser intensity obtained using 808 nm irradiation required a twofold increase in its magnitude to achieve the same damage in cells as that obtained using 1064 nm irradiation. Because of the favorable magnetic property of Fe3O4, magnetically guided photothermal tumor ablation is performed for assessing both laser exposures. According to the results under the fixed laser intensity and irradiation spot, exposure to 1064 nm completely removed tumors showing no signs of relapse. On the other hand, 808 nm irradiation leads to effective inhibition of growth that remained nearly unchanged for up to 30 d, but the tumors are not completely eliminated. In addition, MRI is performed to monitor rattle‐type Fe3O4@CuS localization in the tumor following magnetic attraction.  相似文献   

14.
Multifunctional theranostic agents have become rather attractive to realize image‐guided combination cancer therapy. Herein, a novel method is developed to synthesize Bi2Se3 nanosheets decorated with mono‐dispersed FeSe2 nanoparticles (FeSe2/Bi2Se3) for tetra‐modal image‐guided combined photothermal and radiation tumor therapy. Interestingly, upon addition of Bi(NO3)3, pre‐made FeSe2 nanoparticles via cation exchange would be gradually converted into Bi2Se3 nanosheets, on which remaining FeSe2 nanoparticles are decorated. The yielded FeSe2/Bi2Se3 composite‐nanostructures are then modified with polyethylene glycol (PEG). Taking advantages of the high r 2 relaxivity of FeSe2, the X‐ray attenuation ability of Bi2Se3, the strong near‐infrared optical absorbance of the whole nanostructure, as well as the chelate‐free radiolabeling of 64Cu on FeSe2/Bi2Se3‐PEG, in vivo magnetic resonance/computer tomography/photoacoustic/position emission tomography multimodal imaging is carried out, revealing efficient tumor homing of FeSe2/Bi2Se3‐PEG after intravenous injection. Utilizing the intrinsic physical properties of FeSe2/Bi2Se3‐PEG, in vivo photothermal and radiation therapy to achieve synergistic tumor destruction is then realized, without causing obvious toxicity to the treated animals. This work presents a unique method to synthesize composite‐nanostructures with highly integrated functionalities, promising not only for nano‐biomedicine but also potentially for other different nanotechnology fields.  相似文献   

15.
16.
A core–satellite nanotheranostic agent with pH‐dependent photothermal properties, pH‐triggered drug release, and H2O2‐induced catalytic generation of radical medicine is fabricated to give a selective and effective tumor medicine with three modes of action. The nanocomplex (core–satellite mesoporous silica–gold nanocomposite) consists of amino‐group‐functionalized mesoporous silica nanoparticles (MSN‐NH2) linked to L‐cysteine‐derivatized gold nanoparticles (AuNPs‐Cys) with bridging ferrous iron (Fe2+) ions. The AuNPs‐Cys serve as both removable caps that control drug release (doxorubicin) and stimuli‐responsive agents for selective photothermal therapy. Drug release and photothermal therapy are initiated by the cleavage of Fe2+ coordination bonds at low pH and the spontaneous aggregation of the dissociated AuNPs‐Cys. In addition, the Fe2+ is able to catalyze the decomposition of hydrogen peroxide abundant in cancer cells by a Fenton‐like reaction to generate high‐concentration hydroxyl radicals (·OH), which then causes cell damage. This system requires two tumor microenvironment conditions (low pH and considerable amounts of H2O2) to trigger the three therapeutic actions. In vivo data from mouse models show that a tumor can be completely inhibited after two weeks of treatment with the combined chemo‐photothermal method; the data directly demonstrate the efficiency of the MSN–Fe–AuNPs for tumor therapy.  相似文献   

17.
The integration of efficient imaging for diagnosis and synergistic tumor therapy into a single‐component nanoplatform is much promising for high efficacy tumor treatment but still in a great challenge. Herein, a smart and versatile nanotheranostic platform based on hollow mesoporous Prussian blue nanoparticles (HMPBs) with perfluoropentane (PFP) and doxorubicin (DOX) inside, has been designed, for the first time, to achieve the distinct in vivo synergistic chemo‐thermal tumor therapy and synchronous diagnosis and monitoring by ultrasound (US)/photoacoustic (PA) dual mode imaging. The prepared HMPBs show excellent photothermal conversion properties with large molar extinction coefficient (≈1.2 × 1011m ?1 cm?1) and extremely high photothermal conversion efficiency (41.4%). Such a novel theranostic nanoplatform is expected to overcome the inevitable tumor recurrence and metastasis resulting from the inhomogeneous ablation of single thermal therapy, which will find a promising prospect in the application of noninvasive cancer therapy.  相似文献   

18.
Near infrared light, especially the second near‐infrared light (NIR II) biowindows with deep penetration and high sensitivity are widely used for optical diagnosis and phototherapy. Here, a novel kind of 2D SnTe@MnO2‐SP nanosheet (NS)‐based nanoplatform is developed for cancer theranostics with NIR II‐mediated precise optical imaging and effective photothermal ablation of mouse xenografted tumors. The 2D SnTe@MnO2‐SP NSs are fabricated via a facile method combining ball‐milling and liquid exfoliation for synthesis of SnTe NSs, and surface coating MnO2 shell and soybean phospholipid (SP). The ultrathin SnTe@MnO2‐SP NSs reveal notably high photothermal conversion efficiency (38.2% in NIR I and 43.9% in NIR II). The SnTe@MnO2‐SP NSs inherently feature tumor microenvironment (TME)‐responsive biodegradability, and the main metabolite TeO32? shows great antitumor effect, coupling synergetic chemotherapy for cancer. Moreover, the SnTe@MnO2‐SP NSs also exhibit great potential for fluorescence, photoacoustic (PA), and photothermal imaging agents in the NIR II biowindow with much higher resolution and sensitivity. This is the first report, as far as is known, with such an inorganic nanoagent setting fluorescence/PA/photothermal imaging and photothermal therapy in NIR II biowindow and TME‐responsive biodegradability rolled into one, which provide insight into the clinical potential for cancer theranostics.  相似文献   

19.
Photodynamic therapy (PDT), as a minimally invasive and high‐efficiency anticancer approach, has received extensive research attention recently. Despite plenty of effort devoted to exploring various types of photodynamic agents with strong near‐infrared (NIR) absorbance for PDT and many encouraging progresses achieved in the area, effective and safe photodynamic photosensitizers with good biodegradability and biocompatibility are still highly expected. In this work, a novel nanocomposite has been developed by assembly of iron oxide (Fe3O4) nanoparticles (NPs) and Au nanoparticles on black phosphorus sheets (BPs@Au@Fe3O4), which shows a broad light absorption band and a photodegradable character. In vitro and in vivo assay indicates that BPs@Au@Fe3O4 nanoparticles are highly biocompatible and exhibit excellent tumor inhibition efficacy owing to a synergistic photothermal and photodynamic therapy mediated by a low‐power NIR laser. Importantly, BPs@Au@Fe3O4 can anticipatorily suppress tumor growth by visualized synergistic therapy with the help of magnetic resonance imaging (MRI). This work presents the first combination application of the photodynamic and photothermal effect deriving from black phosphorus nanosheets and plasmonic photothermal effect from Au nanoparticles together with MRI from Fe3O4 NPs, which may open the new utilization of black phosphorus nanosheets in biomedicine, optoelectronic devices, and photocatalysis.  相似文献   

20.
Nanoparticle emitting short‐wave infrared (SWIR) light has received increased attention in the molecular imaging field due to its deeper tissue penetration, fast imaging, high sensitivity, and resolution. The simultaneously activated SWIR excited directly by an 808 nm laser and T1‐weighted magnetic resonance imaging (MRI) signal are found in one single‐shell nanoparticle NaErF4@NaGdF4 (Er@Gd), which is used as a dual‐modality imaging contrast agent in vivo to accurately determine the position of tumors. The conjugated cypate is then aggregated on the surface of Er@Gd@SiO2‐Cy/bovine serum albumin. With the guidance of dual modality imaging, photothermal therapy is effectively used to ablate tumors in a mouse model. The design of single‐shell nanomaterial activation of SWIR imaging and MRI signals is expected to provide a new strategy for high penetration and spatial resolution cancer theranostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号