首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 881 毫秒
1.
Organic field‐effect transistors suffer from ultra‐high operating voltages in addition to their relative low mobility. A general approach to low‐operating‐voltage organic field‐effect transistors (OFETs) using donor/acceptor buffer layers is demonstrated. P‐type OFETs with acceptor molecule buffer layers show reduced operating voltages (from 60–100 V to 10–20 V), with mobility up to 0.19 cm2 V?1 s?1 and an on/off ratio of 3 × 106. The subthreshold slopes of the devices are greatly reduced from 5–12 V/decade to 1.68–3 V/decade. This favorable combination of properties means that such OFETs can be operated successfully at voltages below 20 V (|VDS| ≤ 20 V, |VGS| ≤ 20 V). This method also works for n‐type semiconductors. The reduced operating voltage and low pinch‐off voltage contribute to the improved ordering of the polycrystalline films, reduced grain boundary resistance, and steeper subthreshold slopes.  相似文献   

2.
High‐performance, air‐stable, p‐channel WSe2 top‐gate field‐effect transistors (FETs) using a bilayer gate dielectric composed of high‐ and low‐k dielectrics are reported. Using only a high‐k Al2O3 as the top‐gate dielectric generally degrades the electrical properties of p‐channel WSe2, therefore, a thin fluoropolymer (Cytop) as a buffer layer to protect the 2D channel from high‐k oxide forming is deposited. As a result, a top‐gate‐patterned 2D WSe2 FET is realized. The top‐gate p‐channel WSe2 FET demonstrates a high hole mobility of 100 cm2­ V?1 s?1 and a ION/IOFF ratio > 107 at low gate voltages (VGS ca. ?4 V) and a drain voltage (VDS) of ?1 V on a glass substrate. Furthermore, the top‐gate FET shows a very good stability in ambient air with a relative humidity of 45% for 7 days after device fabrication. Our approach of creating a high‐k oxide/low‐k organic bilayer dielectric is advantageous over single‐layer high‐k dielectrics for top‐gate p‐channel WSe2 FETs, which will lead the way toward future electronic nanodevices and their integration.  相似文献   

3.
Stretchable electronic devices should be enabled by the smart design of materials and architectures because their commercialization is limited by the tradeoff between stretchability and electrical performance limits. In this study, thin‐film transistors are fabricated using strategies that combine the unit process of a novel hybrid gate insulator and low‐temperature indium gallium tin oxide (IGTO) channel layer and a stress‐relief substrate structure. Novel hybrid dielectric films are synthesized and their molecular structural configurations are analyzed. These films consist of a polymer [poly(4‐vinylphenol‐co‐methylmethacrylate)], cross‐linkers having different binding structures [1,6‐bis(trimethoxysilyl)hexane (BTMSH), dodecyltrimethoxysilane, and poly(melamine‐co‐formaldehyde)], and an inorganic zirconia component (ZrOx). The hybrid film with BTMSH cross‐linker and 0.2 M ZrOx exhibits excellent insulating properties as well as mechanical stretchability. IGTO transistors fabricated on polyimide‐coated glass substrates are transferred to the rubber substrate to offer stretchability of the transistor pixelated thin‐film transistors. IGTO transistors fabricated on stretchable substrates using these strategies show promising electrical performance and mechanical durability. After 200 stretchability test cycles under uniaxial elongation of approximately 300%, the IGTO transistor still retains a high carrier mobility of 21.7 cm2 V?1 s?1, a low sub‐threshold gate swing of 0.68 V decade?1 and a high ION/OFF ratio of 2.0 × 107.  相似文献   

4.
High‐performance unipolar n‐type conjugated polymers (CPs) are critical for the development of organic electronics. In the current paper, four “weak donor–strong acceptor” n‐type CPs based on pyridine flanked diketopyrrolopyrrole (PyDPP), namely PPyDPP1‐4FBT, PPyDPP2‐4FBT, PPyDPP1‐4FTVT, and PPyDPP2‐4FTVT, are synthesized via direct arylation polycondensation by using 3,3′,4,4′‐tetrafluoro‐2,2′‐bithiophene (4FBT) or (E)‐1,2‐bis(3,4‐difluorothien‐2‐yl)ethene (4FTVT) as weak donor unit. All four polymers exhibit low‐lying highest occupied molecular orbital (≈ ?5.90 eV) and lowest unoccupied molecular orbital energy levels (≈ ?3.70 eV). Top‐gate/bottom‐contact organic field‐effect transistors based on all four polymers display unipolar n‐channel characteristics with electron mobility (µe) above 1 cm2 V?1 s?1 in air, and presented linear |ISD|1/2 ?VGS plots and weak dependence of the extracted moblity on gate voltage (VGS), indicative of the reliability of the extracted mobility values. Importantly, the devices based on PPyDPP1‐4FBT and PPyDPP2‐4FBT show a pure unipolar n‐channel transistor behavior as revealed by the typical unipolar n‐channel output characteristics and clear off‐regimes in transfer characteristics. Attributed to its high crystallinity and favorable thin film morphology, PPyDPP2‐4FBT shows the highest µe of 2.45 cm2 V?1 s?1, which is among the highest for unipolar n‐type CPs reported to date. This is also the first report for DPP based pure n‐type CPs with µe greater than 1 cm2 V?1 s?1.  相似文献   

5.
Low‐voltage self‐assembled monolayer field‐effect transistors (SAMFETs) that operate under an applied bias of less than ?3 V and a high hole mobility of 10?2 cm2 V?1 s?1 are reported. A self‐assembled monolayer (SAM) with a quaterthiophene semiconducting core and a phosphonic acid binding group is used to fabricate SAMFETs on both high‐voltage (AlOx/300 nm SiO2) and low‐voltage (HfO2) dielectric platforms. High performance is achieved through enhanced SAM packing density via a heated assembly process and through improved electrical contact between SAM semiconductor and metal electrodes. Enhanced electrical contact is obtained by utilizing a functional methylthio head group combined with thermal annealing post gold source/drain electrode deposition to facilitate the interaction between SAM and electrode.  相似文献   

6.
Here, a simple, nontoxic, and inexpensive “water‐inducement” technique for the fabrication of oxide thin films at low annealing temperatures is reported. For water‐induced (WI) precursor solution, the solvent is composed of water without additional organic additives and catalysts. The thermogravimetric analysis indicates that the annealing temperature can be lowered by prolonging the annealing time. A systematic study is carried out to reveal the annealing condition dependence on the performance of the thin‐film transistors (TFTs). The WI indium‐zinc oxide (IZO) TFT integrated on SiO2 dielectric, annealed at 300 °C for 2 h, exhibits a saturation mobility of 3.35 cm2 V?1 s?1 and an on‐to‐off current ratio of ≈108. Interestingly, through prolonging the annealing time to 4 h, the electrical parameters of IZO TFTs annealed at 230 °C are comparable with the TFTs annealed at 300 °C. Finally, fully WI IZO TFT based on YOx dielectric is integrated and investigated. This TFT device can be regarded as “green electronics” in a true sense, because no organic‐related additives are used during the whole device fabrication process. The as‐fabricated IZO/YOx TFT exhibits excellent electron transport characteristics with low operating voltage (≈1.5 V), small subthreshold swing voltage of 65 mV dec?1 and the mobility in excess of 25 cm2 V?1 s?1.  相似文献   

7.
The study of monolayer organic field‐effect transistors (MOFETs) provides an effective way to investigate the intrinsic charge transport of semiconductors. To date, the research based on organic monolayers on polymeric dielectrics lays far behind that on inorganic dielectrics and the realization of a bulk‐like carrier mobility on pure polymer dielectrics is still a formidable challenge for MOFETs. Herein, a quasi‐monolayer coverage of pentacene film with orthorhombic phase is grown on the poly (amic acid) (PAA) dielectric layer. More significantly, charge density redistribution occurs at the interface between the pentacene and PAA caused by electron transfer from pentacene to the PAA dielectric layer, which is verified by theoretical simulations and experiments. As a consequence, an enhanced hole accumulation layer is formed and pentacene‐based MOFETs on pure polymer dielectrics exhibit bulk‐like carrier mobilities of up to 13.7 cm2 V?1 s?1 from the saturation region at low VGS, 9.1 cm2 V?1 s?1 at high VGS and 7.6 cm2 V?1 s?1 from the linear region, which presents one of the best results of previously reported MOFETs so far and indicates that the monolayer semiconductor growing on pure polymer dielectric could produce highly efficient charge transport.  相似文献   

8.
Conjugated polymer semiconductors P1 and P2 with bithienopyrroledione (bi‐TPD) as acceptor unit are synthesized. Their transistor and photovoltaic performances are investigated. Both polymers display high and balanced ambipolar transport behaviors in thin‐film transistors. P1‐ based devices show an electron mobility of 1.02 cm2 V?1 s?1 and a hole mobility of 0.33 cm2 V?1 s?1, one of the highest performance reported for ambipolar polymer transistors. The electron and hole mobilities of P2 transistors are 0.36 and 0.16 cm2 V?1 s?1, respectively. The solar cells with PC71BM as the electron acceptor and P1/P2 as the donor exhibit a high V oc about 1.0 V, and a power conversion efficiency of 6.46% is observed for P1‐ based devices without any additives and/or post treatment. The high performance of P1 and P2 is attributed to their crystalline films and short π–π stacking distance (<3.5 Å). These results demonstrate (1) bi‐TPD is an excellent versatile electron‐deficient unit for polymer semiconductors and (2) bi‐TPD‐based polymer semiconductors have potential applications in organic transistors and organic solar cells.  相似文献   

9.
The promise of wearable and implantable devices has made stretchable organic semiconductors highly desirable. Though there are increasing attempts to design intrinsically stretchable conjugated polymers, their performance in terms of charge carrier mobility and maximum fracture strain is still lacking behind extrinsic approaches (i.e., buckling, Kirigami interconnects). Here, polymer crosslinking with flexible oligomers is applied as a strategy to reduce the tensile modulus and improve fracture strain, as well as fatigue resistance for a high mobility diketopyrrolopyrrole polymer. These polymers are crosslinked with siloxane oligomers to give stretchable films stable up to a strain ε = 150% and 500 strain‐and‐release cycles of 100% strain without the formation of nanocracks. Organic field‐effect transistors are prepared to assess the electrical properties of the crosslinked film under cyclic strain loading. An initial average mobility (μavg) of 0.66 cm2 V?1 s?1 is measured at 0% strain. A steady μavg above 0.40 cm2 V?1 s?1 is obtained in the direction perpendicular to the strain direction after 500 strain‐and‐release cycles of 20% strain. The μavg in the direction parallel to strain, however, is compromised due to the formation of wrinkles.  相似文献   

10.
This work demonstrates that threshold voltage (VT) of organic thin‐film transistors (OTFTs) can be controlled systematically by introducing new copolymer dielectrics with electropositive functionality. A series of homogeneous copolymer dielectrics are polymerized from two monomers, 1,3,5‐trimethyl‐1,3,5‐trivinyl cyclotrisiloxane (V3D3) and 1‐vinylimidazole (VI), via initiated chemical vapor deposition. The chemical composition of the copolymer dielectrics is exquisitely controlled to tune the VT of C60 OTFTs. In particular, all the copolymer dielectrics demonstrated in this work exhibit extremely low leakage current densities (lower than 2.5 × 10?8 A cm?2 at ±3 MV cm?1) even with a thickness less than 23 nm. Furthermore, by introducing an ultrathin pV3D3 interfacial layer (about 3 nm) between the copolymer dielectrics and C60 semiconductor, the high mobility of the C60 OTFTs (about 1 cm2 V?1 s?1) remains unperturbed, showing that VT can be controlled independently by tuning the composition of the copolymer dielectrics. Coupled with the ultralow dielectric thickness, the independent VT controllability allows the VT to be aligned near 0 V with sub‐3 V operating voltage, which enables a substantial decrease of device power consumption. The suggested method can be employed widely to enhance device performance and reduce power consumption in various organic integrated circuit applications.  相似文献   

11.
An active matrix‐type stretchable display is realized by overlay‐aligned transfer of inorganic light‐emitting diode (LED) and single‐crystal Si thin film transistor (TFT) with roll processes. The roll‐based transfer enables integration of heterogeneous thin film devices on a rubber substrate while preserving excellent electrical and optical properties of these devices, comparable to their bulk properties. The electron mobility of the integrated Si‐TFT is over 700 cm2 V?1 s?1, and this is attributed to the good interface between the Si channel and the thermally grown SiO2 insulator. The light emission properties of the LED are of wafer quality. The resulting display stably operates under tensile strains up to 40%, over 200 cycles, demonstrating the potential of stretchable displays based on inorganic materials.  相似文献   

12.
For wearable and implantable electronics applications, developing intrinsically stretchable polymer semiconductor is advantageous, especially in the manufacturing of large‐area and high‐density devices. A major challenge is to simultaneously achieve good electrical and mechanical properties for these semiconductor devices. While crystalline domains are generally needed to achieve high mobility, amorphous domains are necessary to impart stretchability. Recent progresses in the design of high‐performance donor–acceptor polymers that exhibit low degrees of energetic disorder, while having a high fraction of amorphous domains, appear promising for polymer semiconductors. Here, a low crystalline, i.e., near‐amorphous, indacenodithiophene‐co‐benzothiadiazole (IDTBT) polymer and a semicrystalline thieno[3,2‐b]thiophene‐diketopyrrolopyrrole (DPPTT) are compared, for mechanical properties and electrical performance under strain. It is observed that IDTBT is able to achieve both a high modulus and high fracture strain, and to preserve electrical functionality under high strain. Next, fully stretchable transistors are fabricated using the IDTBT polymer and observed mobility ≈0.6 cm2 V?1 s?1 at 100% strain along stretching direction. In addition, the morphological evolution of the stretched IDTBT films is investigated by polarized UV–vis and grazing‐incidence X‐ray diffraction to elucidate the molecular origins of high ductility. In summary, the near‐amorphous IDTBT polymer signifies a promising direction regarding molecular design principles toward intrinsically stretchable high‐performance polymer semiconductor.  相似文献   

13.
A new concept for reusable eco‐friendly hydrogel electrolytes based on cellulose is introduced. The reported electrolytes are designed and engineered through a simple, fast, low‐cost, and eco‐friendly dissolution method of microcrystalline cellulose at low temperature using an aqueous LiOH/urea solvent system. The cellulose solution is combined with carboxymethyl cellulose, followed by the regeneration and simultaneous ion incorporation. The produced free standing cellulose‐based electrolyte films exhibit interesting properties for application in flexible electrochemical devices, such as biosensors or electrolyte‐gated transistors (EGTs), because of their high specific capacitances (4–5 µF cm?2), transparency, and flexibility. Indium–gallium–zinc‐oxide EGTs on glass with laminated cellulose‐based hydrogel electrolytes (CHEs) as the gate dielectric are produced presenting a low working voltage (<2 V), showing an on–off current ratio (I on/off) of 106, a subthreshold swing lower than 0.2 V dec?1, and saturation mobility (μSat) reaching 26 cm2 V?1 s?1. The flexible CHE‐gated transistors on paper are also demonstrated, which operate at switching frequencies up to 100 Hz. Combining the flexibility of the EGTs on paper with the reusability of the developed CHEs is a breakthrough toward biodegradable advanced functional materials allied with disposable/recyclable and low‐cost electronic devices.  相似文献   

14.
Semi‐ionically fluorinated graphene (s‐FG) is synthesized with a one step liquid fluorination treatment. The s‐FG consists of two different types of bonds, namely a covalent C‐F bond and an ionic C‐F bond. Control is achieved over the properties of s‐FG by selectively eliminating ionic C‐F bonds from the as prepared s‐FG film which is highly insulating (current < 10?13 A at 1 V). After selective elimination of ionic C‐F bonds by acetone treatment, s‐FG recovers the highly conductive property of graphene. A 109 times increase in current from 10?13 to 10?4A at 1 V is achieved, which indicates that s‐FG recovers its conducting property. The properties of reduced s‐FG vary according to the number of layers and the single layer reduced s‐FG has mobility of more than 6000 cm2 V?1 s?1. The mobility drastically decreases with increasing number of layers. The bi‐layered s‐FG has a mobility of 141cm2 V?1 s?1 and multi‐layered s‐FG film showed highly p‐type doped electrical property without Dirac point. The reduction via acetone proceeds as 2C2F(semi‐ionic) + CH3C(O)CH3(l) → HF + 2C(s) + C2F(covalent) + CH3C(O)CH2(l). The fluorination and reduction processes permit the safe and facile non‐destructive property control of the s‐FG film.  相似文献   

15.
Organic crystals that combine high charge‐carrier mobility and excellent light‐emission characteristics are expected to be of interest for light‐emitting transistors and diodes, and may offer renewed hope for electrically pumped laser action. High‐luminescence‐efficiency cyano‐substituted oligo(p‐ phenylene vinylene) (CN‐DPDSB) crystals (η ≈ 95%) grown by the physical vapor transport method is reported here, with high mobilities (at ≈10?2 cm2 V?1 s?1 order of magnitude) as measured by time‐of‐flight. The CN‐DPDSB crystals have well‐balanced bipolar carrier‐transport characteristics (μhole≈ 2.5–5.5 × 10?2 cm2 V?1 s?1; μelectron ≈ 0.9–1.3 × 10?2 cm2 V?1 s?1) and excellent optically pumped laser properties. The threshold for amplified spontaneous emission (ASE) is about 4.6 μJ per pulse (23 KW cm?2), while the gain coefficient at the peak wavelength of ASE and the loss coefficient caused by scattering are ≈35 and ≈1.7 cm?1, respectively. This indicates that CN‐DPDSB crystals are promising candidates for organic laser diodes.  相似文献   

16.
Highly regioregular (RR) poly(3‐hexylthiophene)s PHTs are known to exhibit excellent electrical properties in comparison to chemically identical but regiorandom (rr) PHTs. In this study, distinct RR (97% and 55%)‐graded PHTs are subjected to solution blending to spontaneously separate the high‐RR PHT chains from the low‐RR PHT media and develop highly conjugated nanodomains in both solution and film. In the spun‐cast blend films, the rr PHT matrix imparts sufficient deformability of the channel layer required for stretchable organic thin‐film transistors (OTFTs), compared to neat RR PHTs and blends with a deformable polymer. OTFTs including RR PHT/rr PHT blend films show excellent hole mobility (µ) values up to 0.13 cm2 V?1 s?1, surpassing that of the best RR PHT films (0.026 cm2 V?1 s?1) fabricated by ultrasound solution pretreatment. Furthermore, a 50% stretched RR PHT/rr PHT film maintains ≈55% of its µ value at no strain, while RR PHT films show a sudden decrease in µ even at 10% stretch. The simple blending approach imparts deformability to π‐conjugated polymer films for application in stretchable OTFTs.  相似文献   

17.
A fully transparent non‐volatile memory thin‐film transistor (T‐MTFT) is demonstrated. The gate stack is composed of organic ferroelectric poly(vinylidene fluoride‐trifluoroethylene) [P(VDF‐TrFE)] and oxide semiconducting Al‐Zn‐Sn‐O (AZTO) layers, in which thin Al2O3 is introduced between two layers. All the fabrication processes are performed below 200 °C on the glass substrate. The transmittance of the fabricated device was more than 90% at the wavelength of 550 nm. The memory window obtained in the T‐MTFT was 7.5 V with a gate voltage sweep of ?10 to 10 V, and it was still 1.8 V even with a lower voltage sweep of ?6 to 6 V. The field‐effect mobility, subthreshold swing, on/off ratio, and gate leakage currents were obtained to be 32.2 cm2 V?1 s?1, 0.45 V decade?1, 108, and 10?13 A, respectively. All these characteristics correspond to the best performances among all types of non‐volatile memory transistors reported so far, although the programming speed and retention time should be more improved.  相似文献   

18.
The development of solution‐processed field effect transistors (FETs) based on organic and hybrid materials over the past two decades has demonstrated the incredible potential in these technologies. However, solution processed FETs generally require impracticably high voltages to switch on and off, which precludes their application in low‐power devices and prevent their integration with standard logic circuitry. Here, a universal and environmentally benign solution‐processing method for the preparation of Ta2O5, HfO2 and ZrO2 amorphous dielectric thin films is demonstrated. High mobility CdS FETs are fabricated on such high‐κ dielectric substrates entirely via solution‐processing. The highest mobility, 2.97 cm2 V?1 s?1 is achieved in the device with Ta2O5 dielectric with a low threshold voltage of 1.00 V, which is higher than the mobility of the reference CdS FET with SiO2 dielectric with an order of magnitude decrease in threshold voltage as well. Because these FETs can be operated at less than 5 V, they may potentially be integrated with existing logic and display circuitry without significant signal amplification. This report demonstrates high‐mobility FETs using solution‐processed Ta2O5 dielectrics with drastically reduced power consumption; ≈95% reduction compared to that of the device with a conventional SiO2 gate dielectric.  相似文献   

19.
Facile one‐pot [1 + 1 + 2] and [2 + 1 + 1] syntheses of thieno[3,2‐b]thieno[2′,3′:4,5]thieno[2,3‐d]thiophene (tetrathienoacene; TTA) semiconductors are described which enable the efficient realization of a new TTA‐based series for organic thin‐film transistors (OTFTs). For the perfluorophenyl end‐functionalized derivative DFP‐TTA , the molecular structure is determined by single‐crystal X‐ray diffraction. This material exhibits n‐channel transport with a mobility as high as 0.30 cm2V?1s?1 and a high on‐off ratio of 1.8 × 107. Thus, DFP‐TTA has one of the highest electron mobilities of any fused thiophene semiconductor yet discovered. For the phenyl‐substituted analogue, DP‐TTA , p‐channel transport is observed with a mobility as high as 0.21 cm2V?1s?1. For the 2‐benzothiazolyl (BS‐) containing derivative, DBS‐TTA , p‐channel transport is still exhibited with a hole mobility close to 2 × 10?3 cm2V?1s?1. Within this family, carrier mobility magnitudes are strongly dependent on the semiconductor growth conditions and the gate dielectric surface treatment.  相似文献   

20.
Transition metal dichalcogenides (TMDs) layers of molecular thickness, in particular molybdenum disulfide (MoS2), become increasingly important as active elements for mechanically flexible/stretchable electronics owing to their relatively high carrier mobility, wide bandgap, and mechanical flexibility. Although the superior electronic properties of TMD transistors are usually integrated into rigid silicon wafers or glass substrates, the achievement of similar device performance on flexible substrates remains quite a challenge. The present work successfully addresses this challenge by a novel process architecture consisting of a solution‐based polyimide (PI) flexible substrate in which laser‐welded silver nanowires are embedded, a hybrid organic/inorganic gate insulator, and multilayers of MoS2. Transistors fabricated according to this process scheme have decent properties: a field‐effect‐mobility as high as 141 cm2 V?1 s?1 and an Ion/Ioff ratio as high as 5 × 105. Furthermore, no apparent degradation in the device properties is observed under systematic cyclic bending tests with bending radii of 10 and 5 mm. Overall electrical and mechanical results provide potentially important applications in the fabrication of versatile areas of flexible integrated circuitry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号