首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Solution‐processed metal halide perovskites (MHPs) have attracted much attention for applications in light‐emitting diodes (LEDs) due to their wide color gamut, high color purity, tunable emission wavelength, balanced electron/hole transportation, etc. Although MHPs are very tolerant to defects, the defects in solution‐processed perovskite LEDs (PeLEDs) still cause severe nonradiative recombination and device instability. Here, molecular design of additives for dual passivation of both lead and halide defects in perovskites is reported. A bi‐functional additive, 4‐fluorophenylmethylammonium‐trifluoroacetate (FPMATFA), is synthesized by using a simple solution process. The TFA anions and FPMA cations can bond with undercoordinated lead and halide ions, respectively, resulting in dual passivation of both lead and halide defects. In addition, the bulky FPMA group can constrain the grain growth of 3D perovskite, enhancing electron–hole capture rates and radiative recombination rates. As a result, high‐performance PeLEDs with a peak external quantum efficiency reaching 20.9% and emission wavelength at 694 nm are achieved using formamidinium‐cesium lead iodide‐bromide (FA0.33Cs0.67Pb(I0.7Br0.3)3). Furthermore, the operational lifetime of PeLEDs is also greatly improved due to the low trap density in the perovskite film.  相似文献   

2.
Perovskite light‐emitting diodes (LEDs) require small grain sizes to spatially confine charge carriers for efficient radiative recombination. As grain size decreases, passivation of surface defects becomes increasingly important. Additionally, polycrystalline perovskite films are highly brittle and mechanically fragile, limiting their practical applications in flexible electronics. In this work, the introduction of properly chosen bulky organo‐ammonium halide additives is shown to be able to improve both optoelectronic and mechanical properties of perovskites, yielding highly efficient, robust, and flexible perovskite LEDs with external quantum efficiency of up to 13% and no degradation after bending for 10 000 cycles at a radius of 2 mm. Furthermore, insight of the improvements regarding molecular structure, size, and polarity at the atomic level is obtained with first‐principles calculations, and design principles are provided to overcome trade‐offs between optoelectronic and mechanical properties, thus increasing the scope for future highly efficient, robust, and flexible perovskite electronic device development.  相似文献   

3.
Metal halide perovskites have aroused tremendous interest in the past several years for their promising applications in display and lighting. However, the development of blue perovskite light‐emitting diodes (PeLEDs) still lags far behind that of their green and red cousins due to the difficulty in obtaining high‐quality blue perovskite emissive layers. In this study, a simple approach is conceived to improve the emission and electrical properties of blue perovskites. By introducing an alkali metal ion to occupy some sites of peripheral suspended organic ligands, the nonradiative recombination is suppressed, and, consequently, blue CsPb(Br/Cl)3 nanocrystals with a high photoluminescence quantum efficiency of 38.4% are obtained. The introduced K+ acts as a new type of metal ligand, which not only suppresses nonradiative pathways but also improves the charge carrier transport of the perovskite nanocrystals. With further engineering of the device structure to balance the charge injection rate, a spectrally stable and efficient blue PeLED with a maximum external quantum efficiency of 1.96% at the emission peak of 477 nm is fabricated.  相似文献   

4.
Organic-inorganic hybrid perovskite have recently drawn appreciable attention for applications in light-emitting diodes (LEDs). However, the weak exciton binding energy of the methylammonium lead iodide perovskite introduces large exciton dissociation and low radiative recombination on its application as emission layer in near-infrared LEDs. Herein, we demonstrate the simple method by incorporating of phenethylammonium iodide (PEAI) into the perovskite can concurrently improve the radiative recombination rate for improving perovskite LED performances. Additionally, by introducing PEAI dramatically constrains the growth of perovskite crystals during film forming, producing crystallites with small dimensions, reducing roughness, and pin-hole free. After optimizing the emission layer in the perovskite LED, a high optical output power of 458.03 μW and external quantum efficiency of 5.25% are achieved, which represents a ~50-fold enhancement in the quantum efficiency compared to device without PEAI. Our work suggests a broad application prospect of perovskite materials for high optical output power LEDs and eventually a potential for solution-processed electrically pumped NIR laser diodes.  相似文献   

5.
Metal halide perovskite materials have emerged as a promising class of semiconductors for high-performance optoelectronic applications, particularly for light-emitting diodes (LEDs), due to their high quantum efficiency, facile color tunability, narrow emission line widths, as well as cost-effectiveness. Despite the great successes on green and red perovskite LEDs (PeLEDs), the external quantum efficiency (EQE) of blue PeLEDs still lags far behind that of green and red counterparts. Here, wavelength tunable pure and deep blue PeLEDs with high EQE are presented, achieving 17.5% and 10.8% for emission wavelengths of 472 and 461 nm, respectively. The wavelength tenability and high EQE are attributed to the unique vertically graded bandgaps and grain boundary organic shells in the perovskite films. The results demonstrate a significant performance improvement in blue PeLEDs, provide a novel route to fabricate high-performance pure and deep blue PeLEDs that can match the performance of the green and red PeLEDs for future lighting and display applications.  相似文献   

6.
Electroluminescent devices based on metal halide perovskites have attracted extensive attention owing to their high external quantum efficiency, excellent color purity, and inexpensive solution process. So far, extensive efforts have been made to improve the efficiency of the monochromatic perovskite light‐emitting diodes (LEDs). However, multicolor perovskite‐based LEDs are seldom studied. Here, an individual device capable of multicolor emission in response to the passage of external electric bias is demonstrated. With the rational design of the energy band alignment and control of the carrier transport property, color‐tunable electroluminescent devices based on inorganic halide perovskite and chalcogenide quantum‐dots are fabricated with a wide color tuning range, high color reversibility, and ultrafast color switching. The mechanism of chromaticity tuning is investigated and is explained by the shift of the exciton recombination zone with the driving voltage. The presented work will impact scientific communities by encouraging the manufacture of cost‐effective, high‐resolution, and full‐color displays and human‐centric lighting.  相似文献   

7.
Quasi‐2D metal halide perovskite films are promising for efficient light‐emitting diodes (LEDs), because of their efficient radiative recombination and suppressed trap‐assisted quenching compared with pure 3D perovskites. However, because of the multidomain polycrystalline nature of solution‐processed quasi‐2D perovskite films, the composition engineering always impacts the emitting properties with complicated mechanisms. Here, defect passivation and domain distribution of quasi‐2D perovskite films prepared with various precursor compositions are systematically studied. As a result, in perovskite films prepared from stoichiometric quasi‐2D precursor compositions, large organic ammonium cations function well as passivators. In comparison, precursor compositions of simply adding large organic halide salt into a 3D perovskite precursor ensure not only the defect passivation but also the effective formation of quasi‐2D perovskite domains, avoiding unfavorable appearance of low‐order domains. Quasi‐2D perovskite films fabricated with a well‐designed precursor composition achieve a high photoluminescence quantum yield of 95.3% and an external quantum efficiency of 14.7% in LEDs.  相似文献   

8.
Lead halide perovskite nanocrystals (PeNCs) are promising materials for applications in optoelectronics. However, their environmental instability remains to be addressed to enable their advancement into industry. Here the development of a novel synthesis method is reported for monodispersed PeNCs coated with all inorganic shell of cesium lead bromide (CsPbBr3) grown epitaxially on the surface of formamidinium lead bromide (FAPbBr3) NCs. The formed FAPbBr3/CsPbBr3 NCs have photoluminescence in the visible range 460–560 nm with narrow emission linewidth (20 nm) and high optical quantum yield, photoluminescence quantum yield (PLQY) up to 93%. The core/shell perovskites have enhanced optical stability under ambient conditions (70 d) and under ultraviolet radiation (50 h). The enhanced properties are attributed to overgrowth of FAPbBr3 with all‐inorganic CsPbBr3 shell, which acts as a protective layer and enables effective passivation of the surface defects. The use of these green‐emitting core/shell FAPbBr3/CsPbBr3 NCs is demonstrated in light‐emitting diodes (LEDs) and significant enhancement of their performance is achieved compared to core only FAPbBr3‐LEDs. The maximum current efficiency observed in core/shell NC LED is 19.75 cd A‐1 and the external quantum efficiency of 8.1%, which are approximately four times and approximately eight times higher, respectively, compared to core‐only devices.  相似文献   

9.
Metal halide perovskites are rising as a competitive material for next‐generation light‐emitting diodes (LEDs). However, the development of perovskite LEDs is impeded by their fast carriers diffusion and poor stability in bias condition. Herein, quasi‐2D CsPbBr3 quantum wells homogeneously surrounded by inorganic crystalline Cs4PbBr6 of large bandgap are grown. The centralization of carriers in nanoregion facilitates radiative recombination and brings much enhanced luminescence quantum yield. The external quantum efficiency and luminescence intensity of the LEDs based on this nanocomposite are one order of magnitude higher than the conventional low‐dimensional perovskite. Meanwhile, the use of inorganic nanocomposite materials brings much improved device operation lifetime under constant electrical field.  相似文献   

10.
Metal halide perovskites have attracted considerable attention for light-emitting diode (LED) applications due to their desirable optoelectronic properties including high brightness and color purity. However, the performance of blue perovskite LEDs (PeLEDs) remains inferior to their red and green counterparts. Herein, an ionic liquid (IL), specifically 1-butyl-3-methylimidazolium tetrafluoroborate is introduced as the interlayer on the hole transport layer (HTL). This IL demonstrates a strong interaction with the perovskite emissive layer, resulting in effective defect passivation and a shallower valence band maximum. Consequently, nonradiative recombination is reduced, and hole injection is enhanced. Additionally, a soft lithography method employing a transfer process is successfully developed that enables precise micropatterning of the perovskite light-emitting layer. Through these advancements, the IL-modified PeLED exhibits pure blue emission at 470 nm with a maximum luminance of 891 cd m−2 and an impressive maximum EQE of 8.3%. Furthermore, the micro PeLED with an IL interlayer achieves a maximum luminance of 400 cd m−2 and a maximum EQE of 3.9%.  相似文献   

11.
Narrow‐band photoluminescence (PL) together with high quantum efficiency from organic molecules is essential for high‐color‐purity emitters. Supramolecular assemblies like J‐aggregates are promising materials due to their narrow PL signal with full‐width at half maximum <20 nm. However, their microcrystalline nature and coherent exciton migration results in strong nonradiative exciton recombination at the grain boundaries that diminish the photoluminescence quantum yield (PLQY), and possibilities for improving the crystallinity by tuning the growth mechanism are limited. Here, two distinct routes to grow different J‐aggregate morphologies like platelets and lamellar crystals with improved crystallinity by surface‐guided molecular assembly are demonstrated, thereby suppressing nonradiative decay and improving PLQY. Both platelets and lamellar crystals show similar absorbance at room temperature. However, temperature‐dependent PL studies show sevenfold (twofold) higher PLQY for lamellar films compared to platelets at 6 K (300 K). Using time‐resolved PL spectroscopy, different nonradiative decay pathways are identified. The dependence of exciton diffusion on energetic disorder and nonradiative decay is discussed. The results suggest that the difference in domain size and order gives rise to significantly enhanced radiative decay from lamellar films as compared to platelets or films formed by spin‐coating.  相似文献   

12.
Recently, all‐inorganic cesium lead halide (CsPbX3, X = Cl, Br, I) perovskite nanocrystals have drawn much attention because of their outstanding photophysical properties and potential applications. In this work, a simple and efficient solvothermal approach to prepare CsPbX3 nanocrystals with tunable and bright photoluminescent (PL) properties, controllable composition, and morphology is presented. CsPbX3 nanocubes are successfully prepared with bright emission high PL quantum yield up to 80% covering the full visible range and narrow emission line widths (from 12 to 36 nm). More importantly, ultrathin CsPbX3 (X = Cl/Br, Br, and Br/I) nanowires (with diameter as small as ≈2.6 nm) can be prepared in a very high morphological yield (almost 100%). A strong quantum confinement effect is observed in the ultrathin nanowires, in which both the absorption and emission peaks shift to shorter wavelength range compared to their bulk bandgap. The reaction parameters, such as temperature and precursors, are varied to investigate the growth process. A white light‐emitting device prototype device with wide color gamut covering up to 120% of the National Television System Committee standard has been demonstrated by using CsPbBr3 nanocrystals as the green light source. The method in this study provides a simple and efficient way to prepare high‐quality CsPbX3 nanocrystals.  相似文献   

13.
All-inorganic bismuth-halide perovskites are promising alternatives for lead halide perovskites due to their admirable chemical stability and optoelectronic properties; however, these materials deliver inferior photoluminescence (PL) properties, severely hindering their prospects in lighting applications. Here, a novel air-stable but non-emissive perovskite Rb3BiCl6 is synthesized, and the material is used as a prototype to uncover origin of the poor optical performance in bismuth-halide perovskite. It is found that the extremely strong exciton–phonon interactions with a large coupling constant up to 693 meV leads to the seriously nonradiative recombination, which, however, can be effectively suppressed to 347 meV by introducing Sb3+ ions. As a result, Sb3+-doped Rb3BiCl6 exhibits a stable yellow emission with unprecedented PL quantum yield up to 33.6% from self-trapped excitons. Systematic spectroscopic characterizations and theoretical calculations are carried out to unveil the intriguing photophysical mechanisms. This work reveals the effect of exciton–phonon interaction, that is often underemphasized, on a material's photophysical properties.  相似文献   

14.
Perovskite Light-emitting diodes (PeLEDs) have emerged as a promising technique for future high-definition displays due to their outstanding electroluminescent characters. However, the development of blue PeLEDs toward practical applications is seriously hindered by their inferior performance, which mainly arises from the detrimental halide ionic behavior and thus severe nonradiative recombination in mixed-halide blue perovskite materials. Herein, efficient sky-blue PeLEDs featuring spectrally stable emission at 483 nm are realized by employing bifunctional passivators of Lewis-base benzoic acid anions and alkali metal cations to simultaneously passivate the under-coordinated lead atoms and suppress halide ion migration. A decent external quantum efficiency (EQE) of 16.58% and a maximum EQE of 18.65% are achieved, which is further boosted to 28.82% through the optical outcoupling enhancement. This work demonstrates unique insight into the generality and individuality of this category of benzoates and puts forward a feasible guidance in choosing appropriate additives for efficient perovskite materials.  相似文献   

15.
卤化钙钛矿型发光二极管(PeLED)的窄发射峰有望用于下一代显示器和照明,但是能量转换效率特别是蓝色PeLED的转换效率仍然低于常规无机和有机LED的效率。在这些钙钛矿中用毒性较小的元素(通常是过渡金属和各种镧系元素)取代Pb,可在保持窄的发射特性的同时提高能源效率。本文介绍了Pr3+掺杂与Cl-Br卤化物交换结合的效果,产生了一系列蓝色发射量子点,峰值波长可在430~490 nm范围内可调,这些蓝色Pr3+-CsPb(Br/Cl)3量子点的光致发光量子产率(PLQY)比未掺杂Pr3+的量子点相比提高了2~3倍。本文还研究了Pr3+掺杂蓝光量子点在365 nm紫外线照射下和高温加热时的稳定性,掺杂后的蓝光量子点的光热稳定性提升。  相似文献   

16.
Ruddlesden–Popper perovskite, (PEA)2PbBr4 (PEA = C8H9NH3), is a steady and inexpensive material with a broad bandgap and a narrow‐band emission. These features make it a potential candidate for deep‐blue light‐emitting diodes (LEDs). However, due to the weak exciton binding energy, LEDs based on the perovskite thin films usually possess a very low external quantum efficiency (EQE) of <0.03%. Here, for the first time, the construction of high‐performance deep‐blue LEDs based on 2D (PEA)2PbBr4 nanoplates (NPs) is demonstrated. The as‐fabricated (PEA)2PbBr4 NPs film shows a deep‐blue emission at 410 nm with excellent stability under ambient conditions. Impressively, LEDs based on the (PEA)2PbBr4 NPs film deliver a bright deep‐blue emission with a maximum luminance of 147.6 cd m?2 and a high EQE up to 0.31%, which represents the most efficient and brightest perovskite LEDs operating at deep‐blue wavelengths. Furthermore, the LEDs retain over 80% of their efficiencies for over 1350 min under ≈60% relative humidity. The steady and bright deep‐blue LEDs can be used as an excitation light source to realize white light emission, which shows the potential for light communication. The work provides scope for developing perovskite into efficient and deep‐blue LEDs for low‐cost light source and light communication.  相似文献   

17.
The band-edge electronic structure of lead halide perovskites (ABX3) is composed of the orbitals of B and X components and can be tuned through the composition and structure of the BX6 octahedron. Although A-site cations do not directly contribute to near-edge states, the bandgap of 3D metal halide perovskites can be affected by A-cations through BX6 octahedron tilting or lattice size variation. Here, as confirmed by the Rietveld refinement results of X-ray diffraction characterization, the competition between lattice expansion and octahedral tilting is identified for the first time in emission wavelength tuning when introducing a large A-site cation (C2H5NH3+, EA+) into 1-naphthylmethylammonium iodide-passivated CsPbI3 system. The former dominates spectral redshift, while the latter leads to a blueshift of emission peak, which broadens the way to tune the emission wavelength. In addition, excess cations can also passivate the perovskites, leading to a photoluminescence (PL) quantum yield as high as 61%, increased average PL lifetime of 74.7 ns, and a high radiative and non-radiative recombination ratio of 15.7. Eventually, spectral-stable deep-red perovskite light-emitting diode with a maximum external quantum efficiency of 17.5% is realized, which is one of the highest efficiencies without using any light outcoupling and anti-solvent techniques.  相似文献   

18.
Defect‐mediated carrier recombination at the interfaces between perovskite and neighboring charge transport layers limits the efficiency of most state‐of‐the‐art perovskite solar cells. Passivation of interfacial defects is thus essential for attaining cell efficiencies close to the theoretical limit. In this work, a novel double‐sided passivation of 3D perovskite films is demonstrated with thin surface layers of bulky organic cation–based halide compound forming 2D layered perovskite. Highly efficient (22.77%) mixed‐dimensional perovskite devices with a remarkable open‐circuit voltage of 1.2 V are reported for a perovskite film having an optical bandgap of ≈1.6 eV. Using a combination of experimental and numerical analyses, it is shown that the double‐sided surface layers provide effective defect passivation at both the electron and hole transport layer interfaces, suppressing surface recombination on both sides of the active layer. Despite the semi‐insulating nature of the passivation layers, an increase in the fill factor of optimized cells is observed. The efficient carrier extraction is explained by incomplete surface coverage of the 2D perovskite layer, allowing charge transport through localized unpassivated regions, similar to tunnel‐oxide passivation layers used in silicon photovoltaics. Optimization of the defect passivation properties of these films has the potential to further increase cell efficiencies.  相似文献   

19.
As the requirements and expectation for displays in society are growing, higher standards of the display technology are proposed, including wider color gamut, higher color purity, and higher resolution. The recent emergence of light‐emitting halide perovskites has come with numerous advantages, such as high charge‐carrier mobility, tunable emission wavelength, narrow emission linewidth, and intrinsically high photoluminescence quantum yield. Recent advancement of perovskite‐based light‐emitting diodes (PeLEDs) as a promising technology for next‐generation displays is reviewed. Here, how the attractive optical and electrical properties of perovskite materials can be translated into high PeLED performance are discussed, and working mechanisms and optimization approaches of both perovskite materials and the respective devices are analyzed. On the material side this includes the control of size and composition of perovskites grains and nanocrystals, surface and interface passivation, doping and alloying, while on the device side this includes the interfacial engineering and energy level adjustments, and photon emission enhancement. Several challenges such as performance of blue PeLEDs, the environmental and operational stability of PeLEDs, and the toxicity issues of lead halide perovskites are discussed, and perspectives on future developments of perovskite materials and PeLEDs for the display technology are offered.  相似文献   

20.
Organic-inorganic lead halide perovskite are promising photovoltaic materials, but their intrinsic defects and crystalline quality severely deteriorate the solar cells efficiency and stability. Herein, potassium 1,1,2,2,3,3-hexafluoroprop-ane-1,3-disulfonimide (KHFDF) is introduced into PbI2 precursor solution to passivate various defects and improve the crystalline quality of perovskite films. It is found that KHFDF can inhibit PbI2 crystallization, thus tuning the crystal orientation and growth of perovskite films. Furthermore, KHFDF with dual-functional sulfonyl group cannot only passivate grain boundaries (GBs), but also passivate the defects at GBs via strong interaction with undercoordinated Pb2+ and/or hydrogen bonding with FA+, while the K+ counter cations allow ionic interaction with undercoordinated I. As a result, the KHFDF-modified films exhibit high quality with a larger grain size and a reduced trap-state density, thereby suppressing the trap-state nonradiative recombination. And the devices show a champion efficiency up to 24.15%, benefiting from a sharp enhancement of open-circuit voltage (Voc) of 1.183 V and fill factor of 81.78%. In addition, due to the enhanced humidity tolerance and chemical structure stability, the devices exhibit excellent long-term humidity and thermal stability without encapsulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号