首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Charge carrier mobility is an important characteristic of organic field‐effect transistors (OFETs) and other semiconductor devices. However, accurate mobility determination in FETs is frequently compromised by issues related to Schottky‐barrier contact resistance, that can be efficiently addressed by measurements in 4‐probe/Hall‐bar contact geometry. Here, it is shown that this technique, widely used in materials science, can still lead to significant mobility overestimation due to longitudinal channel shunting caused by voltage probes in 4‐probe structures. This effect is investigated numerically and experimentally in specially designed multiterminal OFETs based on optimized novel organic‐semiconductor blends and bulk single crystals. Numerical simulations reveal that 4‐probe FETs with long but narrow channels and wide voltage probes are especially prone to channel shunting, that can lead to mobilities overestimated by as much as 350%. In addition, the first Hall effect measurements in blended OFETs are reported and how Hall mobility can be affected by channel shunting is shown. As a solution to this problem, a numerical correction factor is introduced that can be used to obtain much more accurate experimental mobilities. This methodology is relevant to characterization of a variety of materials, including organic semiconductors, inorganic oxides, monolayer materials, as well as carbon nanotube and semiconductor nanocrystal arrays.  相似文献   

2.
The tuning of charge carrier concentrations in semiconductor is necessary in order to approach high performance of the electronic and optoelectronic devices. It is demonstrated that the charge‐carrier density of single‐layer (SL), bilayer (BL), and few‐layer (FL) MoS2 nanosheets can be finely and reversibly tuned with N2 and O2 gas in the presence of deep‐ultraviolet (DUV) light. After exposure to N2 gas in the presence of DUV light, the threshold voltages of SL, BL, and FL MoS2 field‐effect transistors (FETs) shift towards negative gate voltages. The exposure to N2 gas in the presence of DUV light notably improves the drain‐to‐source current, carrier density, and charge‐carrier mobility for SL, BL, and FL MoS2 FETs. Subsequently, the same devices are exposed to O2 gas in the presence of DUV light for different periods and the electrical characteristics are completely recovered after a certain time. The doping by using the combination of N2 and O2 gas with DUV light provides a stable, effective, and facile approach for improving the performance of MoS2 electronic devices.  相似文献   

3.
Organic thermoelectric materials, which can transform heat flow into electricity, have great potential for flexible, ultra‐low‐cost and large‐area thermoelectric applications. Despite rapid developments of organic thermoelectric materials, exploration and investigation of promising organic thermoelectric semiconductors still remain as a challenge. Here, the thermoelectric properties of several p‐ and n‐type organic semiconductors are investigated and studied, in particular, how the electric field modulations of the Seebeck coefficient in organic field‐effect transistors (OFETs) compare with the Seebeck coefficient in chemically doped films. The extracted relationship between the Seebeck coefficient (S) and electrical conductivity (σ) from the field‐effect transistor (FET) geometry is in good agreement with that of chemically doped films, enabling the investigation of the trade‐off relationship among σ, S, carrier concentration, and charging level. The results make OFETs an effective candidate for the thermoelectric studies of organic semiconductors.  相似文献   

4.
The temperature dependence of field‐effect transistor (FET) mobility is analyzed for a series of n‐channel, p‐channel, and ambipolar organic semiconductor‐based FETs selected for varied semiconductor structural and device characteristics. The materials (and dominant carrier type) studied are 5,5′′′‐bis(perfluorophenacyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 1 , n‐channel), 5,5′′′‐bis(perfluorohexyl carbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 2 , n‐channel), pentacene ( 3 , p‐channel); 5,5′′′‐bis(hexylcarbonyl)‐2,2′:5′,2″:5″,2′′′‐quaterthiophene ( 4 , ambipolar), 5,5′′′‐bis‐(phenacyl)‐2,2′: 5′,2″:5″,2′′′‐quaterthiophene ( 5 , p‐channel), 2,7‐bis((5‐perfluorophenacyl)thiophen‐2‐yl)‐9,10‐phenanthrenequinone ( 6 , n‐channel), and poly(N‐(2‐octyldodecyl)‐2,2′‐bithiophene‐3,3′‐dicarboximide) ( 7 , n‐channel). Fits of the effective field‐effect mobility (µeff) data assuming a discrete trap energy within a multiple trapping and release (MTR) model reveal low activation energies (EAs) for high‐mobility semiconductors 1 – 3 of 21, 22, and 30 meV, respectively. Higher EA values of 40–70 meV are exhibited by 4 – 7 ‐derived FETs having lower mobilities (µeff). Analysis of these data reveals little correlation between the conduction state energy level and EA, while there is an inverse relationship between EA and µeff. The first variable‐temperature study of an ambipolar organic FET reveals that although n‐channel behavior exhibits EA = 27 meV, the p‐channel regime exhibits significantly more trapping with EA = 250 meV. Interestingly, calculated free carrier mobilities (µ0) are in the range of ~0.2–0.8 cm2 V?1 s?1 in this materials set, largely independent of µeff. This indicates that in the absence of charge traps, the inherent magnitude of carrier mobility is comparable for each of these materials. Finally, the effect of temperature on threshold voltage (VT) reveals two distinct trapping regimes, with the change in trapped charge exhibiting a striking correlation with room temperature µeff. The observation that EA is independent of conduction state energy, and that changes in trapped charge with temperature correlate with room temperature µeff, support the applicability of trap‐limited mobility models such as a MTR mechanism to this materials set.  相似文献   

5.
Very recently, electric‐field‐induced superconductivity in an insulator was realized by tuning charge carrier to a high density level (1 × 1014 cm?2). To increase the maximum attainable carrier density for electrostatic tuning of electronic states in semiconductor field‐effect transistors is a hot issue but a big challenge. Here, ultrahigh density carrier accumulation is reported, in particular at low temperature, in a ZnO field‐effect transistor gated by electric double layers of ionic liquid (IL). This transistor, called an electric double layer transistor (EDLT), is found to exhibit very high transconductance and an ultrahigh carrier density in a fast, reversible, and reproducible manner. The room temperature capacitance of EDLTs is found to be as large as 34 µF cm?2, deduced from Hall‐effect measurements, and is mainly responsible for the carrier density modulation in a very wide range. Importantly, the IL dielectric, with a supercooling property, is found to have charge‐accumulation capability even at low temperatures, reaching an ultrahigh carrier density of 8×1014 cm?2 at 220 K and maintaining a density of 5.5×1014 cm?2 at 1.8 K. This high carrier density of EDLTs is of great importance not only in practical device applications but also in fundamental research; for example, in the search for novel electronic phenomena, such as superconductivity, in oxide systems.  相似文献   

6.
Control of the carrier type in 2D materials is critical for realizing complementary logic computation. Carrier type control in WSe2 field‐effect transistors (FETs) is presented via thickness engineering and solid‐state oxide doping, which are compatible with state‐of‐the‐art integrated circuit (IC) processing. It is found that the carrier type of WSe2 FETs evolves with its thickness, namely, p‐type (<4 nm), ambipolar (≈6 nm), and n‐type (>15 nm). This layer‐dependent carrier type can be understood as a result of drastic change of the band edge of WSe2 as a function of the thickness and their band offsets to the metal contacts. The strong carrier type tuning by solid‐state oxide doping is also demonstrated, in which ambipolar characteristics of WSe2 FETs are converted into pure p‐type, and the field‐effect hole mobility is enhanced by two orders of magnitude. The studies not only provide IC‐compatible processing method to control the carrier type in 2D semiconductor, but also enable to build functional devices, such as, a tunable diode formed with an asymmetrical‐thick WSe2 flake for fast photodetectors.  相似文献   

7.
A charge‐carrier density dependent mobility has been predicted for amorphous, glassy energetically disordered semiconducting polymers, which would have considerable impact on their performance in devices. However, previous observations of a density dependent mobility are complicated by the polycrystalline materials studied. Here charge transport in field‐effect transistors and diodes of two amorphous, glassy fluorene‐triarylamine copolymers is investigated, and the results explored in terms of a charge‐carrier density dependent mobility model. The nondispersive nature of the time‐of‐flight (TOF) transients and analysis of dark injection transient results and transistor transfer characteristics indicate a charge‐carrier density independent mobility in both the low‐density diode and the high‐density transistor regimes. The mobility values for optimized transistors are in good agreement with the TOF values at the same field, and both have the same temperature dependency. The measured transistor mobility falls two to three orders of magnitude below that predicted from the charge‐carrier density dependent model, and does not follow the expected power‐law relationship. The experimental results for these two amorphous polymers are therefore consistent with a charge‐carrier density independent mobility, and this is discussed in terms of polaron‐dominated hopping and interchain correlated disorder.  相似文献   

8.
This work describes n‐type self‐assembled monolayer field‐effect transistors (SAMFETs) based on a perylene derivative which is covalently fixed to an aluminum oxide dielectric via a phosphonic acid linker. N‐type SAMFETs spontaneously formed by a single layer of active molecules are demonstrated for transistor channel length up to 100 μm. Highly reproducible transistors with electron mobilities of 1.5 × 10?3 cm2 V?1 s?1 and on/off current ratios up to 105 are obtained. By implementing n‐type and p‐type transistors in one device, a complimentary inverter based solely on SAMFETs is demonstrated for the first time.  相似文献   

9.
A new way to investigate and control the growth of solution‐cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM‐D) and in situ grazing‐incidence wide‐angle X‐ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time‐evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid‐liquid interface at the expense of homogeneous nucleation.  相似文献   

10.
Field‐effect transistors are the fundamental building blocks for electronic circuits and processors. Compared with inorganic transistors, organic field‐effect transistors (OFETs), featuring low cost, low weight, and easy fabrication, are attractive for large‐area flexible electronic devices. At present, OFETs with planar structures are widely investigated device structures in organic electronics and optoelectronics; however, they face enormous challenges in realizing large current density, fast operation speed, and outstanding mechanical flexibility for advancing their potential commercialized applications. In this context, vertical organic field‐effect transistors (VOFETs), composed of vertically stacked source/drain electrodes, could provide an effective approach for solving these questions due to their inherent small channel length and unique working principles. Since the first report of VOFETs in 2004, impressive progress has been witnessed in this field with the improvement of device performance. The aim of this review is to give a systematical summary of VOFETs with a special focus on device structure optimization for improved performance and potential applications demonstrated by VOFETs. An overview of the development of VOFETs along with current challenges and perspectives is also discussed. It is hoped that this review is timely and valuable for the next step in the rapid development of VOFETs and their related research fields.  相似文献   

11.
While many high‐performance polymer semiconductors are reported for organic field‐effect transistors (OFETs), most require a high‐temperature postdeposition annealing of channel semiconductors to achieve high performance. This negates the fundamental attribute of OFETs being a low‐cost alternative to conventional high‐cost silicon technologies. A facile solution process is developed through which high‐performance OFETs can be fabricated without thermal annealing. The process involves incorporation of an incompatible hydrocarbon binder or wax into the channel semiconductor composition to drive rapid phase separation and instantaneous crystallization of polymer semiconductor at room temperature. The resulting composite channel semiconductor film manifests a nano/microporous surface morphology with a continuous semiconductor nanowire network. OFET mobility of up to about 5 cm2 V?1 s?1 and on/off ratio ≥ 106 are attained. These are hitherto benchmark performance characteristics for room‐temperature, solution‐processed polymer OFETs, which are functionally useful for many impactful applications.  相似文献   

12.
Atomically thin 2D layered transition metal dichalcogenides (TMDs) have been extensively studied in recent years because of their appealing electrical and optical properties. Here, the fabrication of ReS2 field‐effect transistors is reported via the encapsulation of ReS2 nanosheets in a high‐κ Al2O3 dielectric environment. Low‐temperature transport measurements allow to observe a direct metal‐to‐insulator transition originating from strong electron–electron interactions. Remarkably, the photodetectors based on ReS2 exhibit gate‐tunable photoresponsivity up to 16.14 A W?1 and external quantum efficiency reaching 3168%, showing a competitive device performance to those reported in graphene, MoSe2, GaS, and GaSe‐based photodetectors. This study unambiguously distinguishes ReS2 as a new candidate for future applications in electronics and optoelectronics.  相似文献   

13.
Solution‐processed oxide semiconductors (OSs) used as channel layer have been presented as a solution to the demand for flexible, cheap, and transparent thin‐film transistors (TFTs). In order to produce high‐performance and long‐sustainable portable devices with the solution‐processed OS TFTs, the low‐operational voltage driving current is a key issue. Experimentally, increasing the gate‐insulator capacitances by high‐k dielectrics in the OS TFTs has significantly improved the field‐effect mobility of the OS TFTs. But, methodical examinations of how the field‐effect mobility depends on gate capacitance have not been presented yet. Here, a systematic analysis of the field‐effect mobility on the gate capacitances in the solution‐processed OS TFTs is presented, where the multiple‐trapping‐and‐release and hopping percolation mechanism are used to describe the electrical conductivity of the nanocrystalline and amorphous OSs, respectively. An intuitive single‐piece expression showing how the field‐effect mobility depends on gate capacitance is developed based on the aforementioned mechanisms. The field‐effect mobility, depending on the gate capacitances, of the fabricated ZnO and ZnSnO TFTs clearly follows the theoretical prediction. In addition, the way in which the gate insulator properties (e.g., gate capacitance or dielectric constant) affect the field‐effect mobility maximum in the nanocrystalline ZnO and amorphous ZnSnO TFTs are investigated.  相似文献   

14.
15.
The organic field‐effect transistor (OFET) has proven itself invaluable as both the fundamental element in organic circuits and the primary tool for the characterization of novel organic electronic materials. Crucial to the success of the OFET in each of these venues is a working understanding of the device physics that manifest themselves in the form of electrical characteristics. As commercial applications shift to smaller device dimensions and structure/property relationships become more refined, the understanding of these phenomena become increasingly critical. Here, we employ high‐performance, elastomeric, photolithographically patterned single‐crystal field‐effect transistors as tools for the characterization of short‐channel effects and bias‐dependent parasitic contact resistance and field‐effect mobility. Redundant characterization of devices at multiple channel lengths under a single crystal allow the morphology‐free analysis of these effects, which is carried out in the context of a device model previously reported. The data show remarkable consistency with our model, yielding fresh insight into each of these phenomena, as well as confirming the utility of our FET design.  相似文献   

16.
A series of indolo[3,2‐b]indole (IDID) derivatives comprising the core unit of N,N‐dihexyl‐IDID with different aromatic and aliphatic substituents at 2‐ and 7‐position are designed and synthesized to construct high‐performance organic semiconductors by different processing routes. Structure‐property relationship of the derivatives is comprehensively studied in terms of their photophysical, electrochemical, structural, and electrical characteristics. IDID derivatives are either evaporated in vacuum or dissolved in common organic solvents to ensure applicalbility in different processing routes toward outstanding p‐type semiconductor films. Among others, the excellently soluble compound 4H4TIDID (with 2‐ and 7‐substituents of 5‐hexyl‐2,2′‐bithiophene moiety, solubility >20 wt% in chloroform), shows the highest field‐effect hole mobility of 0.97 cm2 V?1 s?1 in a device constructed by vacuum‐deposition and 0.18 cm2 V?1 s?1 in device cosntructed by spin‐coating, respectively. The 2D grazing incidence X‐ray diffraction of 4H4TIDID films in both devices identically show the 2D molecular orientation favorable for the high transistor mobility.  相似文献   

17.
18.
Ordering of semiconducting polymers in thin films from the nano to microscale is strongly correlated with charge transport properties as well as organic field‐effect transistor performance. This paper reports a method to control nano to microscale ordering of poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (P(NDI2OD‐T2)) thin films by precisely regulating the solidification rate from the metastable state just before crystallization. The proposed simple but effective approach, kinetically controlled crystallization, achieves optimized P(NDI2OD‐T2) films with large polymer domains, long range ordered fibrillar structures, and molecular orientation preferable for electron transport leading to dramatic morphological changes in both polymer domain sizes at the micrometer scale and molecular packing structures at nanoscales. Structural changes significantly increase electron mobilities up to 3.43 ± 0.39 cm2 V?1 s?1 with high reliability, almost two orders of enhancement compared with devices from naturally dried films. Small contact resistance is also obtained for electron injection (0.13 MΩ cm), low activation energy (62.51 meV), and narrow density of states distribution for electron transport in optimized thin films. It is believed that this study offers important insight into the crystallization of conjugated polymers that can be broadly applied to optimize the morphology of semiconducting polymer films for solution processed organic electronic devices.  相似文献   

19.
We report on electric‐field‐induced irreversible structural modifications in pentacene thin films after long‐term operation of organic field‐effect transistor (OFET) devices. Micro‐Raman spectroscopy allows for the analysis of the microstructural modifications of pentacene in the small active channel of OFET during device operation. The results suggest that the herringbone packing of pentacene molecules in a solid film is affected by an external electric field, particularly the source‐to‐drain field that parallels the a–b lattice plane. The analysis of vibrational frequency and Davydov splitting in the Raman spectra reveals a singular behavior suggesting a reduced separation distance between pentacene molecules after long‐term operations and, thus, large intermolecular interactions. These results provide evidence for improved OFET performance after long‐term operation, related to the microstructures of organic semiconductors. It is known that the application of large electric fields alters the semiconductor properties of the material owing to the generation of defects and the trapping of charges. However, we first suggest that large electric fields may alter the molecular geometry and further induce structural phase transitions in the pentacene films. These results provide a basis for understanding the improved electronic properties in test devices after long‐term operations, including enhanced field‐effect mobility, improved on/off current ratio, sharp sub‐threshold swing, and a slower decay rate in the output drain current. In addition, the effects of source‐to‐drain electric field, gate electric field, current and charge carriers, and thermal annealing on the pentacene films during OFET operations are discussed.  相似文献   

20.
A new electrontransport polymer, poly{[N,N′‐dioctylperylene‐3,4,9,10‐bis(dicarboximide)‐1,7(6)‐diyl]‐alt‐[(2,5‐bis(2‐ethyl‐hexyl)‐1,4‐phenylene)bis(ethyn‐2,1‐diyl]} (PDIC8‐EB), is synthesized. In chloroform, the polymer undergoes self‐assembly, forming a nanowire suspension. The nanowire's optical and electrochemical properties, morphological structure, and field‐effect transistor (FET) characteristics are investigated. Thin films fabricated from a PDIC8‐EB nanowire suspension are composed of ordered nanowires and ordered and amorphous non‐nanowire phases, whereas films prepared from a homogeneous PDIC8‐EB solution consist of only the ordered and amorphous non‐nanowire phases. X‐ray scattering experiments suggest that in both nanowires and ordered phases, the PDIC8 units are laterally stacked in an edge‐on manner with respect to the film plane, with full interdigitation of the octyl chains, and with the polymer backbones preferentially oriented within the film plane. The ordering and orientations are significantly enhanced through thermal annealing at 200 °C under inert conditions. The polymer film with high degree of structural ordering and strong orientation yields a high electron mobility (0.10 ± 0.05 cm2 V?1 s?1), with a high on/off ratio (3.7 × 106), a low threshold voltage (8 V), and negligible hysteresis (0.5 V). This study demonstrates that the polymer in the nanowire suspension provides a suitable material for fabricating the active layers of high‐performance n‐channel FET devices via a solution coating process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号