首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the problem of active fault‐tolerant control for switched systems with time delay. By utilizing the fault diagnosis observer, an adaptive fault estimate algorithm is proposed, which can estimate the fault signal fast and exactly. Meanwhile, a delay‐dependent criterion is obtained with the purpose of reducing the conservatism of the adaptive observer design. Based on the fault estimation information, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of linear matrix inequality, sufficient conditions are derived for the existence of the adaptive observer and fault‐tolerant controller. Finally, a numerical example is included to illustrate the efficiency of the proposed approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents an effective scheme for detecting incipient faults in post‐fault systems (PFSs) subject to adaptive fault‐tolerant control (AFTC). Through a survey of existing techniques, it is shown that the adaptivity of the AFTC counteracts the effect of an incipient fault in the PFS. This makes some of the conventional fault‐detection strategies, such as Beard–Jones detection filters and adaptive observers, ineffective in this situation. It is shown that the unknown input observer (UIO) is an effective tool; hence, the UIO is designed to decouple the incipient fault from the AFTC such that the fault‐detection residual is sensitive only to the incipient fault. Extensive simulation study is presented using an aircraft example to test three fault‐detection approaches; it is demonstrated that the UIO is the most effective tool in detecting the incipient fault in a PFS subject to AFTC. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper studies the problem of fault accommodation of time‐varying delay systems using adaptive fault diagnosis observer. Based on the proposed fast adaptive fault estimation (FAFE) algorithm using only a measured output, a delay‐dependent criteria is first established to reduce the conservatism of the design procedure, and the FAFE algorithm can enhance the performance of fault estimation. On the basis of fault estimation, the observer‐based fault‐tolerant tracking control is then designed to guarantee tracking performance of the closed‐loop systems. Furthermore, comprehensive analysis is presented to discuss the calculation steps using linear matrix inequality technique. Finally, simulation results of a stirred tank reactor model are presented to illustrate the efficiency of the proposed techniques. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, an actuator fault‐tolerant control (FTC) strategy based on set separation is presented. The proposed scheme employs a standard configuration consisting of a bank of observers which match the different fault situations that can occur in the plant. Each of these observers has an associated estimation error with a distinctive behaviour when a estimator matches the current fault situation of the plant. With this information from each observer, a fault diagnosis and isolation (FDI) module is able to reconfigure the control loop by selecting the appropriate stabilising controller from a bank of precomputed control laws, each of them related to one of the considered fault models. The control law consists of a reference feedforward term and a feedback gain multiplying the state estimate provided by the matching observer. A novel feature of the proposed scheme resides in the decision criteria of the FDI, which is based on the computation of sets towards which the output estimation errors related to each fault scenario and for each control configuration converge. Conditions for the design of the FDI module and for fault tolerant closed‐loop stability are given, and the effectiveness of the approach is illustrated by means of a numerical example. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the problem of fault‐tolerant insensitive control is addressed for a class of linear time‐invariant continuous‐time systems against bounded time‐varying actuator faults and controller gain variations. Adaptive mechanisms are developed to adjust controller gains in order to compensate for the detrimental effects of partial loss of control effectiveness and bias‐actuator faults. Variations of controller gains arise from time‐varying and bounded perturbations that are supposed to always exist in adaptive mechanisms. Based on the disturbed outputs of adaptive mechanisms, three different adaptive control strategies are constructed to achieve bounded stability results of the closed‐loop adaptive fault‐tolerant control systems in the presence of actuator faults and controller gain variations. Furthermore, comparisons of convergence boundaries of states and limits of control inputs among adaptive strategies are developed in this paper. The efficiency of the proposed adaptive control strategies and their comparisons are demonstrated by a rocket fairing structural‐acoustic model.  相似文献   

6.
This paper is concerned with the robust fault tolerant controller design of networked control systems (NCSs) with state delay and stochastic actuator failures. By utilizing the input delay approach, an equivalent continuous‐time generalized time delay system in both state and input is obtained. By applying a delay decomposition approach, the information of the delayed plant states can be taken into full consideration, and new delay‐dependent sufficient conditions that ensure the asymptotic mean‐square stability of NCSs with stochastic actuator failures are derived in terms of linear matrix inequalities (LMIs). It is realized by employing a new Lyapunov–Krasovskii function in the decomposed integral intervals and directly handle the inversely weighted convex combination of quadratic terms of integral quantities with reciprocally convex combination technique. Moreover, the proposed approach involves neither slack variable nor any model transformation. A numerical example is provided to demonstrate the effectiveness and less conservatism of the proposed method.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the robust adaptive fault‐tolerant control problem for state‐constrained continuous‐time linear systems with parameter uncertainties, external disturbances, and actuator faults including stuck, outage, and loss of effectiveness. It is assumed that the knowledge of the system matrices, as well as the upper bounds of the disturbances and faults, is unknown. By incorporating a barrier‐function like term into the Lyapunov function design, a novel model‐free fault‐tolerant control scheme is proposed in a parameter‐dependent form, and the state constraint requirements are guaranteed. The time‐varying parameters are adjusted online based on an adaptive method to prevent the states from violating the constraints and compensate automatically the uncertainties, disturbances, and actuator faults. The time‐invariant parameters solved by using data‐based policy iteration algorithm are introduced for helping to stabilize the system. Furthermore, it is shown that the states converge asymptotically to zero without transgression of the constraints and all signals in the resulting closed‐loop system are uniformly bounded. Finally, two simulation examples are provided to show the effectiveness of the proposed approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The problem of active fault‐tolerant control with reconfiguration mechanism for uncertain linear systems with external disturbances is addressed applying the supervisory control approach. A key feature of the proposed approach is establishment of a set of conditions providing mutual performance in the sense of taking into account the interaction of the fault detection, isolation, and accommodation subsystems in order to achieve global fault‐tolerance performance with guaranteed global stability. The efficiency of the approach is demonstrated in an example of computer simulation for a flight system benchmark. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This work is concerned with the problem of delay‐dependent adaptive fault‐tolerant controller design against unknown actuator faults for linear continuous systems with time‐varying delay. Based on the online estimation of possible faults by discontinuous adaptation law, identification parameters of the adaptive state feedback controller are updated autonomously to compensate the fault effects on the delayed system. For the first time, a convex combination idea and a projection‐type adaptive approach are combined organically to derive the main results. A set of new delay‐dependent reconfigurable stabilization criteria, which guarantee the stability of closed‐loop systems in both fault‐free and faulty cases, is established in terms of linear matrix inequalities. Two numerical instances for linear delayed systems and the linearized model for the lateral motion of Boeing 747 are respectively simulated to illustrate the superiority and the effectiveness of the presented adaptive delay‐dependent results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
This paper investigates the problem of adaptive fault tolerant control for a class of dynamic systems with unknown un‐modeled actuator faults. The fault model is assumed to be an unknown nonlinear function of control input, not in the traditional form in which the faults can be described as gain and/or bias faults. Using the property of the basic function of neural networks and the implicit function theorem, a novel neural networks‐based fault tolerant controller is designed. Finally, the lateral dynamics of a front‐wheeled steered vehicle is used to demonstrate the efficiency of the proposed design techniques. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents 2‐novel linear matrix inequality (LMI)‐based adaptive output feedback fault‐tolerant control strategies for the class of nonlinear Lipschitz systems in the presence of bounded matched or mismatched disturbances and simultaneous occurrence of actuator faults, including failure, loss of effectiveness, and stuck. The constructive algorithms based on LMI with creatively using Lyapunov stability theory and without the need for an explicit information about mode of actuator faults or fault detection and isolation mechanism are developed for online tuning of adaptive and fixed output‐feedback gains to stabilize the closed‐loop control system asymptotically. The proposed controllers guarantee to compensate actuator faults effects and to attenuate disturbance effects. The resulting control methods have simpler structure, as compared with most existing recent methods and more suitable for practical systems. The merits of the proposed fault‐tolerant control scheme have been verified by the simulation on nonlinear Boeing 747 lateral motion dynamic model subjected to actuator faults.  相似文献   

12.
In this paper, an adaptive fault‐tolerant attitude coordinated tracking problem for spacecraft formation is investigated under a directed communication topology containing a spanning tree with the leader as the root, where inertia matrices and external disturbances are unknown time‐varying. With no prior knowledge of faults and inertia, an adaptive approach is proposed to reject the influence of disturbances and uncertainties. Meanwhile, combining with a consensus algorithm and graph theory, an adaptive fault‐tolerant attitude synchronization tracking control law is presented to regulate the attitude to a common time‐varying reference state. Aiming at optimizing the control law, a dynamic adjustment function is introduced to adjust the control gain according to the attitude tracking error. The effectiveness of the proposed control approach is demonstrated through simulation results.  相似文献   

13.
In this paper, an adaptive sliding mode (ASM) scheme is proposed for fault identification and fault‐tolerant control of near space vehicles (NSVs). First, the attitude dynamic model is introduced, and a baseline controller based on reference sliding mode scheme is designed in the case of no faults. Then fault parameterizations with actuator dynamics is presented for several classes of faults: lock‐in‐place, float, hard‐over, and loss of effectiveness. On the basis of adaptive observer design, fault parameters can be accurately estimated on‐line. Furthermore, an ASM fault‐tolerant controller is designed for both cases of actuator dynamic faults and control effector damage. Finally, simulation experiments show that the proposed ASM scheme is able to quickly and accurately identify faults and reconfigure the controller, resulting in excellent overall system performance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
This work deals with the problem of a model reference tracking based on the design of an active fault tolerant control for linear parameter‐varying systems affected by actuator faults and unknown inputs. Linear parameter‐varying systems are described by a polytopic representation with measurable gain scheduling functions. The main contribution is to design an active fault tolerant controller whose control law is described by an adaptive proportional integral structure. This one requires 3 types of online information, which are reference outputs, measured real outputs, and the fault estimation provided by a model reference, sensors, and an adaptive polytopic observer, respectively. These types of information are used to reconfigure the designed controller, which is able to compensate the fault effects and to make the closed‐loop system able to track reference outputs in spite of the presence of actuator faults and disturbances. The controller and the observer gains are obtained by solving a set of linear matrices inequalities. Performances of the proposed method are compared to another previous method to underline the relevant results.  相似文献   

15.
In this paper, a fault detection and diagnosis (FDD) scheme is studied for general stochastic dynamic systems subjected to state time delays. Different from the formulation of classical FDD problems, it is supposed that the measured information for the FDD is the probability density function (PDF) of the system output rather than its actual value. A B‐spline expansion technique is applied so that the output PDF can be formulated in terms of the dynamic weights of the B‐spline expansion, by which a time delay model can be established between the input and the weights with non‐linearities and modelling errors. As a result, the concerned FDD problem can be transformed into a classic FDD problem subject to an uncertain non‐linear system with time delays. Feasible criteria to detect the system fault are obtained and a fault diagnosis method is further presented to estimate the fault. Simple simulations are given to demonstrate the efficiency of the proposed approach. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, fault‐tolerant control problem for discrete‐time switching systems with delay and saturated input is studied. Sufficient conditions of building an observer are obtained by using multiple Lyapunov function. These conditions are worked out using cone complementarity technique, to obtain LMIs with slack variables and multiple weighted residual matrices. The obtained results are applied on a numerical example showing fault detection, localization of fault, and reconfiguration of the control to maintain asymptotic stability even in the presence of a permanent sensor fault and saturation on the control. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
The paper deals with the design of an active fault‐tolerant control strategy based on the supervisory control approach technique for linear time invariant MIMO systems affected by disturbances, measurement noise, and faults. From a bank of Luenberger observers that plays the role of a fault detection and isolation scheme, the supervisory algorithm aims at selecting the suitable fault‐tolerant controller by means of a hysteresis‐based switching mechanism. Based on dwell‐time conditions, Lyapunov global exponential stability is addressed, and it is shown how transient behaviors due to the inherent interactions between fault detection and isolation, fault‐tolerant control, and the reconfiguration mechanism can be improved. The main advantage with respect to existing solutions of open literature is relative to a simple parameterization of all controllers (possibly having different state dimensions, integral action, and/or unstable poles) in order to cope with bumps and undesirable transients when (possible multiple) switches occur. Moreover, it is shown that it is possible to improve (reduce) the dwell‐time value in some cases. The efficiency of the approach is demonstrated on the academic highly maneuverable technology benchmark. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the active fault tolerant control problem via the H state feedback controller. Because of the limitations of Markov processes, we apply semi‐Markov process in the system modeling. Two random processes are involved in the system: the failure process and the fault detection process. Therefore, two corresponding semi‐Markov processes are integrated in the closed‐loop system model. This framework can generally accommodate different types of system faults, including the randomly happening sensor faults and actuator faults. A controller is designed to guarantee the closed‐loop system stability with a prescribed noise/disturbance attenuation level. The controller can be readily solved by using convex optimization techniques. A vertical take‐off and landing vehicle example with actuation faults is used to demonstrate the effectiveness of the proposed technique. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
This paper is concerned with the stability analysis and robust dynamic output feedback controller synthesis for uncertain continuous singular systems with time‐delay. First, on the basis of the Lyapunov functional method and by resorting to the delay‐partition technique, improved delay‐dependent sufficient conditions are presented to ensure the nominal unforced system to be admissible (i.e., to be regular, impulse‐free, and stable). Second, with the help of the obtained admissibility criterion, an observer‐based controller is designed by solving a set of LMIs. Finally, the validity and applicability of the proposed approach is shown by examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, for nonrigid spacecraft formation, a distributed adaptive finite‐time actuator fault‐tolerant (FTAFT) coordinated attitude tracking control (CATC) issue is addressed. Aiming at stabilizing the spacecraft formation flying system during a limited time, two distributed adaptive FTAFT CATC strategies are presented. Initially, on basis of distributed finite‐time observer (DFTO), adaptive control, consensus approach, graph theory, and finite‐time theory, we develop a distributed adaptive FTAFT coordinated attitude tracking controller to repress the impact of the external state‐dependent and state‐independent disturbance, unknown time‐varying inertia uncertainty, and actuator fading or fault. Then, combining with the proposed controller, a distributed adaptive FTAFT control law with input saturation subjected to physical limitations of actuator is further designed. In addition, a self‐adjusting matrix (SAM) is proposed to improve the actuators' performance. With the two proposed CATC strategies, the followers can synchronize with the leader. Simulations demonstrated the validity of the designed control laws.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号