首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal halide perovskites are maturing as materials for efficient, yet low cost solar cells and light‐emitting diodes, with improving operational stability and reliability. To date however, most perovskite‐based devices contain Pb, which poses environmental concerns due to its toxicity; lead‐free alternatives are of importance to facilitate the development of perovskite‐based devices. Here, the germanium‐based Ruddledsen–Popper series (CH3(CH2)3NH3)2(CH3NH3)n?1GenBr3n+1 is investigated, derived from the parent 3D (n = ∞) CH3NH3GeBr3 perovskite. Divalent germanium is a promising, nontoxic alternative to Pb2+ and the layered, 2D structure appears promising to bolster light emission, long‐term durability, and moisture tolerance. The work, which combines experiments and first principle calculations, highlights that in germanium bromide perovskites the optical bandgap is weakly affected by 2D confinement and the highly stereochemically active 4s2 lone pair preludes to possible ferroelectricity, a topic still debated in Pb‐containing compounds.  相似文献   

2.
Knowledge of the mechanism of formation, orientation, and location of phases inside thin perovskite films is essential to optimize their optoelectronic properties. Among the most promising, low toxicity, lead‐free perovskites, the tin‐based ones are receiving much attention. Here, an extensive in situ and ex situ structural study is performed on the mechanism of crystallization from solution of 3D formamidinium tin iodide (FASnI3), 2D phenylethylammonium tin iodide (PEA2SnI4), and hybrid PEA2FAn?1SnnI3n+1 Ruddlesden–Popper perovskites. Addition of small amounts of low‐dimensional component promotes oriented 3D‐like crystallite growth in the top part of the film, together with an aligned quasi‐2D bottom‐rich phase. The sporadic bulk nucleation occurring in the pure 3D system is negligible in the pure 2D and in the hybrid systems with sufficiently high PEA content, where only surface crystallization occurs. Moreover, tin‐based perovskites form through a direct conversion of a disordered precursor phase without forming ordered solvated intermediates and thus without the need of thermal annealing steps. The findings are used to explain the device performances over a wide range of composition and shed light onto the mechanism of the formation of one of the most promising Sn‐based perovskites, providing opportunities to further improve the performances of these interesting Pb‐free materials.  相似文献   

3.
Blue light emitting two dimensional (2D) and quasi‐2D layered halide perovskites (LHPs) are gaining attention in solid‐state lighting applications but their fragile stability in humid condition is one of the most pressing issues for their practical applications. Though water is much greener and cost effective, organic solvents must be used during synthesis as well as the device fabrication process for these LHPs due to their water‐sensitivity/instability and consequently, water‐stable blue‐light emitting 2D and quasi‐2D LHPs have not been documented yet. Here, water‐mediated facile and cost‐effective syntheses, characterizations, and optical properties of 16 organic–inorganic hybrid compounds are reported including 2D (A′)2PbX4 (A′ = butylammonium, X = Cl/Br/I) (8 compounds), 3D perovskites (4), and quasi‐2D (A′)pAx?1BxX3x+1 LHPs (A = methylammonium) (4) in water. Here, both composition and dimension of LHPs are tuned in water, which has never been explored yet. Furthermore, the dual emissive nature is observed in quasi‐2D perovskites, where the intensity of two photoluminescence (PL) peaks are governed by 2D and 3D inorganic layers. The Pb(OH)2‐coated 2D and quasi‐2D perovskites are highly stable in water even after several months. In addition, single particle imaging is performed to correlate structural–optical property of these LHPs.  相似文献   

4.
3D organic–inorganic and all‐inorganic lead halide perovskites have been intensively pursued for resistive switching memories in recent years. Unfortunately, instability and lead toxicity are two foremost challenges for their large‐scale commercial applications. Dimensional reduction and composition engineering are effective means to overcome these challenges. Herein, low‐dimensional inorganic lead‐free Cs3Bi2I9 and CsBi3I10 perovskite‐like films are exploited for resistive switching memory applications. Both devices demonstrate stable switching with ultrahigh on/off ratios (≈106), ultralow operation voltages (as low as 0.12 V), and self‐compliance characteristics. 0D Cs3Bi2I9‐based device shows better retention time and larger reset voltage than the 2D CsBi3I10‐based device. Multilevel resistive switching behavior is also observed by modulating the current compliance, contributing to the device tunability. The resistive switching mechanism is hinged on the formation and rupture of conductive filaments of halide vacancies in the perovskite films, which is correlated with the formation of AgIx layers at the electrode/perovskite interface. This study enriches the library of switching materials with all‐inorganic lead‐free halide perovskites and offers new insights on tuning the operation of solution‐processed memory devices.  相似文献   

5.
Solution‐processable hybrid perovskite solar cells are a new member of next generation photovoltaics. In the present work, a low‐temperature two‐step dipping method is proposed for the fabrication of CH3NH3PbI3‐xClx perovskite films on the indium tin oxide glass/poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) substrate. The bandgaps of the CH3NH3PbI3‐xClx perovskite films are tuned in the range between 1.54 and 1.59 eV by adjusting the PbCl2 mole fraction (nCl/(nCl + nI)) in the initial mixed precursor solution from 0.10 to 0.40. The maximum chlorine mole fraction measured by a unique potentiometric titration method in the produced CH3NH3PbI3‐xClx films can be up to 0.220 ± 0.020 (x = 0.660 ± 0.060), which is much higher than that produced by a one‐step spin‐coating method (0.056 ± 0.015, x = 0.17 ± 0.04). The corresponding solar cell with the CH3NH3PbI2.34±0.06Cl0.66±0.06 perovskite film sandwiched between PEDOT:PSS and C60 layers exhibits a power conversion efficiency as high as 14.5%. Meanwhile, the open‐circuit potential (Voc) of the device reaches 1.11 V, which is the highest Voc reported in the perovskite solar cells fabricated on PEDOT:PSS so far.  相似文献   

6.
Perovskite materials serve as promising candidates for display and lighting due to their excellent optical properties, including tunable bandgaps and efficient luminescence. However, their efficiency and stability must be improved for further application. In this work, quasi‐two‐dimensional (quasi‐2D) perovskites embedded in different polymers are prepared by inkjet printing to construct any luminescent patterns/pictures on the polymer substrates. The optimized quantum yield reaches over 65% by polyvinyl‐chloride‐based quasi‐2D perovskite composites. In addition, as‐fabricated perovskite?polymer composites with patterns show excellent resistance to abrasion, moisture, light irradiation, and chemical erosion by various solvents. Both quantum yield and lifetime are superior to those reported to date. These achievements are attributed to the introduction of the PEA+ cations to improve the luminance and stability of perovskite. This patterned composite can be useful for color‐conversion films with low cost and large‐scale fabrication.  相似文献   

7.
As the most promising lead‐free branch, tin halide perovskites suffer from the severe oxidation from Sn2+ to Sn4+, which results in the unsatisfactory conversion efficiency far from what they deserve. In this work, by facile incorporation of methylammonium bromide in composition engineering, formamidinium and methylammonium mixed cations tin halide perovskite films with ultrahighly oriented crystallization are synthesized with the preferential facet of (001), and that oxidation is suppressed with obviously declined trap density. MA+ ions are responsible for that impressive orientation while Br ions account for their bandgap modulation. Depending on high quality of the optimal MA0.25FA0.75SnI2.75Br0.25 perovskite films, their device conversion efficiency surges to 9.31% in contrast to 5.02% of the control formamidinium tin triiodide perovskite (FASnI3) device, along with almost eliminated hysteresis. That also results in the outstanding device stability, maintaining above 80% of the initial efficiency after 300 h of light soaking while the control FASnI3 device fails within 120 h. This paper definitely paves a facile and effective way to develop high‐efficiency tin halide perovskites solar cells, optoelectronic devices, and beyond.  相似文献   

8.
Quasi‐2D metal halide perovskite films are promising for efficient light‐emitting diodes (LEDs), because of their efficient radiative recombination and suppressed trap‐assisted quenching compared with pure 3D perovskites. However, because of the multidomain polycrystalline nature of solution‐processed quasi‐2D perovskite films, the composition engineering always impacts the emitting properties with complicated mechanisms. Here, defect passivation and domain distribution of quasi‐2D perovskite films prepared with various precursor compositions are systematically studied. As a result, in perovskite films prepared from stoichiometric quasi‐2D precursor compositions, large organic ammonium cations function well as passivators. In comparison, precursor compositions of simply adding large organic halide salt into a 3D perovskite precursor ensure not only the defect passivation but also the effective formation of quasi‐2D perovskite domains, avoiding unfavorable appearance of low‐order domains. Quasi‐2D perovskite films fabricated with a well‐designed precursor composition achieve a high photoluminescence quantum yield of 95.3% and an external quantum efficiency of 14.7% in LEDs.  相似文献   

9.
Photodetectors with ultrafast response are explored using inorganic/organic hybrid perovskites. High responsivity and fast optoelectronic response are achieved due to the exceptional semiconducting properties of perovskite materials. However, most of the perovskite‐based photodetectors exploited to date are centered on Pb‐based perovskites, which only afford spectral response across the visible spectrum. This study demonstrates a high‐performance near‐IR (NIR) photodetector using a stable low‐bandgap Sn‐containing perovskite, (CH3NH3)0.5(NH2CHNH2)0.5Pb0.5Sn0.5I3 (MA0.5FA0.5Pb0.5Sn0.5I3), which is processed with an antioxidant additive, ascorbic acid (AA). The addition of AA effectively strengthens the stability of Sn‐containing perovskite against oxygen, thereby significantly inhibiting the leakage current. Consequently, the derived photodetector shows high responsivity with a detectivity of over 1012 Jones ranging from 800 to 970 nm. Such low‐cost, solution processable NIR photodetectors with high performance show promising potential for future optoelectronic applications.  相似文献   

10.
Layered hybrid perovskites have emerged as a promising alternative to stabilizing hybrid organic–inorganic perovskite materials, which are predominantly based on Ruddlesden‐Popper structures. Formamidinium (FA)‐based Dion‐Jacobson perovskite analogs are developed that feature bifunctional organic spacers separating the hybrid perovskite slabs by introducing 1,4‐phenylenedimethanammonium (PDMA) organic moieties. While these materials demonstrate competitive performances as compared to other FA‐based low‐dimensional perovskite solar cells, the underlying mechanisms for this behavior remain elusive. Here, the structural complexity and optoelectronic properties of materials featuring (PDMA)FAn–1PbnI3n+1 (n = 1–3) formulations are unraveled using a combination of techniques, including X‐ray scattering measurements in conjunction with molecular dynamics simulations and density functional theory calculations. While theoretical calculations suggest that layered Dion‐Jacobson perovskite structures are more prominent with the increasing number of inorganic layers (n), this is accompanied with an increase in formation energies that render n > 2 compositions difficult to obtain, in accordance with the experimental evidence. Moreover, the underlying intermolecular interactions and their templating effects on the Dion‐Jacobson structure are elucidated, defining the optoelectronic properties. Consequently, despite the challenge to obtain phase‐pure n > 1 compositions, time‐resolved microwave conductivity measurements reveal high photoconductivities and long charge carrier lifetimes. This comprehensive analysis thereby reveals critical features for advancing layered hybrid perovskite optoelectronics.  相似文献   

11.
The recent rise of low‐dimensional Ruddlesden–Popper (RP) perovskites is notable for superior humidity stability, however they suffer from low power conversion efficiency (PCE). Suitable organic spacer cations with special properties display a critical effect on the performance and stability of perovskite solar cells (PSCs). Herein, a new strategy of designing self‐additive low‐dimensional RP perovskites is first proposed by employing a glycine salt (Gly+) with outstanding additive effect to improve the photovoltaic performance. Due to the strong interaction between C?O and Pb2+, the Gly+ can become a nucleation center and be beneficial to uniform and fast growth of the Gly‐based RP perovskites with larger grain sizes, leading to reduced grain boundary and increased carrier transport. As a result, the Gly‐based self‐additive low‐dimensional RP perovskites exhibit remarkable photoelectric properties, yielding the highest PCE of 18.06% for Gly (n = 8) devices and 15.61% for Gly (n = 4) devices with negligible hysteresis. Furthermore, the Gly‐based devices without encapsulation show excellent long‐term stability against humidity, heat, and UV light in comparison to BA‐based low‐dimensional PSCs. This approach provides a feasible design strategy of new‐type low‐dimensional RP perovskites to obtain highly efficient and stable devices for next‐generation photovoltaic applications.  相似文献   

12.
With respect to three‐dimensional (3D) perovskites, quasi‐two‐dimensional (quasi‐2D) perovskites have unique advantages in light‐emitting devices (LEDs), such as strong exciton binding energy and good phase stability. Interlayer ligand engineering is a key issue to endow them with these properties. Rational design principles for interlayer materials and their processing techniques remain open to investigation. A co‐interlayer engineering strategy is developed to give efficient quasi‐2D perovskites by employing phenylbutylammonium bromide (PBABr) and propylammonium bromide (PABr) as the ligand materials. Preparation of these co‐interlayer quasi‐2D perovskite films is simple and highly controllable without using antisolvent treatment. Crystallization and morphology are readily manipulated by tuning the ratio of co‐interlayer components. Various optical techniques, including steady and ultrafast transient absorption and photoluminescence spectroscopies, are used to investigate their excitonic properties. Photoluminescence quantum yield (PLQY) of the perovskite film is dramatically improved to 89% due to the combined optimization of exciton binding energy and suppression of trap state formation. Accordingly, a high current efficiency of 66.1 cd A?1 and an external quantum efficiency of 15.1% are achieved for green co‐interlayer quasi‐2D perovskite LEDs without using any light out‐coupling techniques, indicating that co‐interlayer engineering is a simple and effective approach to develop high‐performance perovskite electroluminescence devices.  相似文献   

13.
Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite‐based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high‐quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament‐type switching behavior. This work elucidates the important role of processing‐dependent defects in the charge transport of hybrid perovskites and provides insights on the ion‐redistribution‐based RS in perovskite memory devices.  相似文献   

14.
The application of low average layer-number (〈n〉 ≤ 2) 2D perovskites in semitransparent photovoltaics (ST-PVs) has been hindered by their strong exciton binding energy and high electrical anisotropy. Here, the phase distribution is expanded fully and orderly to enable efficient charge transport in 2D (NMA)2(MA)Pb2I7 (NMA: 1-naphthylmethylammonium, MA: CH3NH3+) perovskite films by regulating the sedimentation dynamics of organic cation-based colloids. Ammonium chloride is synergistically introduced to enhance the phase separation further and construct a favorable out-of-plane orientation. The wide and graded phase distribution well aligns the energy level to facilitate charge transfer. As a result, the first application of an average 〈n〉 = 2 2D perovskite is implemented in ST-PVs with visible power conversion efficiency (PCE) of 7.52% and high average visible transmittance (AVT) of 40.5%. This study offers a new candidate and an effective strategy for efficient and stable ST-PVs and is relevant to other perovskite optoelectronic devices.  相似文献   

15.
Single‐crystalline perovskites are ideal candidates for lasing and other optoelectronic applications. Although significant efforts have been made to grow both bulk single‐crystalline perovskites in liquid solution, their dimensions are still too large to make nanoscale whispering‐gallery‐mode (WGM) resonator based lasers that possess high quality (Q) factor and small volume. Besides, most reported perovskite resonators do not possess atomically smooth surfaces and facets, which limits the Q and thereby increases the lasing threshold. Here, atomically smooth triangular PbI2 templates are fabricated on a mica substrate by the vapor phase deposition method and are converted to atomically smooth perovskites which have regular and unwrinkled facets with average surface roughness less than 2 nm. By using a CH3NH3PbI3 nanoplatelet with a side length of 27 µm and thickness of 80 nm, room temperature WGM lasing with a Q up to 2600 is demonstrated, the highest reported for hybrid organic–inorganic perovskite nanoplatelets. In addition, the volume of the WGM mode is reduced significantly in comparison with the prior reports. The realized high‐quality triangular CH3NH3PbI3 perovskite nanoplatelets with high Q factor and small volume are expected to perform as ideal cavities for long pulse durations lasers and would find potential applications in integrated optoelectronic devices.  相似文献   

16.
Trap states in semiconductors usually degrade charge separation and collection in photovoltaics due to trap‐mediated nonradiative recombination. Here, it is found that perovskite can be heavily doped in low concentration with non‐ignorable broadband infrared absorption in thick films and their trap states accumulate electrons through infrared excitation and hot carrier cooling. A hybrid one‐sided abrupt perovskite/TiO2 p‐N heterojunction is demonstrated that enables partial collection of these trap‐filled charges through a tunneling process instead of detrimental recombination. The tunneling is from broadband trap states in the wide depleted p‐type perovskite, across the barrier of the narrow depleted TiO2 region (<5 nm), to the N‐type TiO2 electrode. The trap states inject carriers into TiO2 through tunneling and produce around‐unity peak external quantum efficiency, giving rise to near‐infrared photovoltaics. The near‐infrared response allows photodetecting devices to work in both diode and conductor modes. This work opens a new avenue to explore the near‐infrared application of hybrid perovskites.  相似文献   

17.
In this work, alcohol‐vapor solvent annealing treatment on CH3NH3PbI3 thin films is reported, aiming to improve the crystal growth and increase the grain size of the CH3NH3PbI3 crystal, thus boosting the performance of perovskite photovoltaics. By selectively controlling the CH3NH3I precursor, larger‐grain size, higher crystallinity, and pinhole‐free CH3NH3PbI3 thin films are realized, which result in enhanced charge carrier diffusion length, decreased charge carrier recombination, and suppressed dark currents. As a result, over 43% enhanced efficiency along with high reproducibility and eliminated photocurrent hysteresis behavior are observed from perovskite hybrid solar cells (pero‐HSCs) where the CH3NH3PbI3 thin films are treated by methanol vapor as compared with that of pristine pero‐HSCs where the CH3NH3PbI3 thin films are without any alcohol vapor treatment. In addition, the dramatically restrained dark currents and raised photocurrents give rise to over ten times enhanced detectivities for perovskite hybrid photodetectors, reaching over 1013 cm Hz1/2 W?1 (Jones) from 375 to 800 nm. These results demonstrate that the method provides a simple and facile way to boost the device performance of perovskite photovoltaics.  相似文献   

18.
Quasi‐2D (Q2D) lead halide perovskites have emerged as promising materials for light‐emitting diodes (LEDs) due to their tunable emission, slowed‐down carrier diffusion, and improved stability. However, they are primarily fabricated through solution methods, which hinders its large‐scale manufacture and practical applications. Physical‐vapor‐deposition (PVD) methods have well demonstrated the capability for reproducible, scalable, and layer‐by‐layer fabrication of high quality organic/inorganic thin films. Herein, for the first time, the full‐evaporation fabrication of organic–inorganic hybrid ((BA)2Csn?1PbnBr3n+1) Q2D–3D PeLEDs is demonstrated. The morphology and crystal phase of the perovskite are controlled from 3D to 2D by modulating material composition, annealing temperature, and film thicknesses. The confinement of carriers in 3D layers and the energy funnel effect are discovered and discussed. Importantly, a record high external quantum efficiency (EQE) of 5.3% based on evaporation method is achieved. Moreover, a centimeter‐scale PeLED (1.5 cm × 2 cm) is obtained. Furthermore, the T50 lifetime of the device with an initial brightness of 100 cd m?2 is found to be 90 min with a thin layer PMMA passivation, which is among the longest for all PVD processed PeLEDs. Overall, this work casts a solid stepping stone towards the fabrication of high‐performance PeLEDs on a large‐scale.  相似文献   

19.
The recent development of quasi‐2D perovskite solar cells have drawn significant attention due to the improved stability of these materials and devices against moisture compared to their 3D counterparts. However, the optoelectronic properties of 2D perovskites need to be optimized in order to achieve high efficiency. In this work, the effect of spacer cations, i.e., phenethylammonium (PEA), 4‐fluorophenethylammonium (F‐PEA), and 4‐methoxyphenethylammonium (MeO‐PEA) on the optoelectronic properties and device performance of quasi‐2D perovskites is systematically studied. It is observed that both larger and more hydrophobic cations can improve perovskite stability against moisture, while larger size can adversely influence the device performance. Interestingly, with F‐PEA or MeO‐PEA, distribution of n value can be shifted toward high 3D content in quasi‐2D perovskite layers, which enables lower bandgaps and possibly lower exciton binding energy. Due to the best charge transport and lowest bandgap, the F‐PEAI‐based quasi‐2D perovskite (n = 5) solar cell shows a highest power conversion efficiency (PCE) of 14.5% with excellent stability in air with a humidity of 40–50%, keeping 90% of the original PCE after 40 d. It is believed that the approach may open a way for the design of new organic spacer cations for stable low‐dimensional hybrid perovskites with high performance.  相似文献   

20.
Two‐dimensional (2D) organic–inorganic hybrid perovskites (OIHPs), a natural multiple‐quantum‐well structure with quasi‐2D electronic properties, have recently emerged as a promising class of semiconducting materials for photovoltaic and optoelectronic applications. However, facile synthesis of high‐quality 2D OIHPs single crystals is still lacking. The layer dependence of the exciton binding energy of (C4H9NH3)2PbI4 (C4PI), a widely studied 2D OIHP, is still debated. Herein, a novel synthesis technique based on inverse temperature crystallization in a binary‐solvent system is used to prepare 2D OIHPs and a systematic study of excitonic states of the synthesized 2D OIHPs by two‐photon excitation (TPE) spectroscopy is conducted. The obtained TPE spectra indicate that the exciton binding energies are similar for C4PI nanosheets and bulk crystals with different number of layers, most likely due to the intrinsically weak interlayer coupling. Further, the dark excitonic 2p states of (C6H5(CH2)2NH3)2PbI4 (PEPI) and C4PI are also observed by TPE spectroscopy. The results provide a novel synthesis protocol and insight into exciton properties of 2D OIHPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号